PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on the rotating detonation engine and its typical problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd aktualnego stanu wiedzy dotyczącej rotacyjnego silnika detonacyjnego i związanych z nim typowych problemów
Języki publikacji
EN
Abstrakty
EN
Detonation is a promising combustion mode to improve engine performance, increase combustion efficiency, reduce emissions, and enhance thermal cycle efficiency. Over the last decade, significant progress has been made towards the applications of detonation mode in engines, such as standing detonation engine (SDE), Pulse detonation engine (PDE) and rotating detonation engine (RDE), and the understanding of the fundamental chemistry and physics processes in detonation engines via experimental and numerical studies. This article is to provide a comprehensive overview of the progress in the knowledge of rotating detonation engine from the different countries. New observations of injection, ignition, and geometry of combustor, pressure feedback, and combustion modes of RDE have been reported. These findings and advances have provided new opportunities in the development of rotating detonation for practical applications. Finally, we point out the current gaps in knowledge to indicate which areas future research should be directed at.
PL
Detonacja jest obiecującym sposobem spalania w celu poprawy wydajności silnika, zwiększenia wydajności spalania, redukcji emisji i polepszenia wydajności cyklu termicznego. W ostatniej dekadzie dokonano znacznego postępu w kierunku aplikacji trybów detonacji w silnikach, takich jak silnik detonacji stojącej (SDE), pulsacyjny silnik detonacyjny (PDE) i rotacyjny silnik detonacyjny (RDE), a także w celu zrozumienia fundamentalnych procesów chemicznych i fizycznych zachodzących w silnikach detonacyjnych poprzez badania numeryczne i eksperymentalne. Celem niniejszego artykułu jest dostarczenie obszernego przeglądu postępu wiedzy dotyczącej rotacyjnego silnika detonacyjnego z różnych krajów. Przedstawiono nowe obserwacje dotyczące wtrysku paliwa, zapłonu oraz geometrii komory spalania, sprzężenia zwrotnego ciśnienia, sposobów spalania w rotacyjnym silniku detonacyjnym RDE. Odkrycia te oraz postęp w badaniach dostarczyły nowych możliwości w opracowaniu wirującej detonacji dla praktycznych zastosowań. Na koniec wskazaliśmy istniejące obecnie luki w wiedzy w celu wykazania obszarów, na jakie przyszłe badania powinny być ukierunkowane.
Rocznik
Strony
107--163
Opis fizyczny
Bibliogr. 249 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
autor
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
autor
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
autor
  • School of Power and Energy, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an 710129, China
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Bibliografia
  • [1] Abel, F. A., 1869, XIV. Contributions to the history of explosive agents. Philos. Trans. R. Soc. London, 159, pp. 489-516.
  • [2] Berthelot, M. and Vieille, P., 1883, L’onde explosive, Ann. Chim. Phys. Ser 5, 28, pp. 289-332.
  • [3] Chapman, D. L., 1899, VI. On the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(284), pp. 90-104.
  • [4] Jouguet, E., 1913, Sur l’onde explosive. CR Acad. Sci., Paris, 156, pp. 872-875.
  • [5] Zeldovich, Y. B., 1940, Zh. Exp. Teor. Fiz. 10(5), pp. 542-568. English translation, NACA TN No. 1261 (1950).
  • [6] von Neumann, J., 1942, Theory of detonation waves, OSRD Rep.
  • [7] Doring, W., 1943, Detonation waves. Ann. Phys. 5e Folge, 43, pp. 421-436.
  • [8] Campbell, C. and Woodhead, D. W., 1926, CCCCI. - The ignition of gases by an explosionwave. Part I. Carbon monoxide and hydrogen mixtures. J. Chem. Soc. (Resumed), 129, pp. 3010-3021. 10.1039/jR9262903010.
  • [9] Vasil’ev, A. A., 2006, “Cell Size as the Main Geometric Parameter of Multifront Detonation Wave,” J. Propul. Power, 22(6), pp. 1245-1260.
  • [10] Lee, J. H. S. and Radulescu, M. I., 2005, On the hydrodynamic thickness of cell detonations. Combust Explos Shock Waves, 41(6), pp. 745-765. 10.1007/s10573-005-0084-1.
  • [11] Vasil’ev, A. A., 1982, Geometric limits of gas detonation propagation, Combust Explos Shock Waves, 18(2), pp. 245-249. 10.1007/BF00789626.
  • [12] Vasil’ev A. A., Mitrofanov, V. V. and Topchiyan, M. E., 1987, Detonation waves in gases. Combust Explos Shock Waves, 23(5), pp. 605-623. 10.1007/BF00756541.
  • [13] Kindracki, J., Kobiera, A., Wolanski, P., Gut, z., Folusiak, M. and Swiderski, K., 2011, Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures, EUCASS Proceedings Series, 2, pp. 555-582. 10.1051/eucass/201102555.
  • [14] George, A. S., Driscoll, R., Anand, V., et al., 2017, On the existence and multiplicity of rotating detonations. Proc. Combust. Inst, 36(2), pp. 2691-2698. 10.1016/j.proci.2016.06.132.
  • [15] Wen, H., Xie, Q. and Wang, B., 2019, Propagation behaviors of rotating detonation in an obround combustor. Combust. Flame, 210, pp. 389-398. 10.1016/j.combustflame.2019.09.008.
  • [16] Lee, B. H. K., Lee, J. H., Knystautas, R., 1966, Transmission of detonation waves through orifices. AIAA j, 4(2), pp. 365-367.
  • [17] Ciccarelli, G. and Dorofeev, S., 2008, Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci, 34(4), pp. 499-550. 10.1016/j.pecs.2007.11.002.
  • [18] Lee, J. H. S., 2008, The detonation phenomenon. Cambridge, from http://mx.itam.nsc.ru/users/libr/elib/4/2008/lee-DetonPhenomenon.pdf.
  • [19] Shchelkin, K. I., 1940, Influence of tube roughness on the formation and detonation propagation in gas. J. Exp. Theor. Phys., 10, pp. 823-827.
  • [20] Urtiew, P. A. and Oppenheim, A. K., 1966, Experimental observation of the transition to detonation in an explosive gas. Proc. R. Soc. london. Series A. Mathematical and Physical Sciences, 295(1440), pp. 13-28.
  • [21] Lee, J. H., Knystautas, R. and Yoshikawa, N., 1980, Photochemical initiation of gaseous detonations//gas dynamics of Explosions and Reactive Systems. Pergamon, pp. 971-982.
  • [22] Zhang, H., Liu, W. and Liu, S., 2016, Effects of inner cylinder length on H2/air rotating detonation. Int. J. Hydrogen Energy, 41(30), pp. 13281-13293. 10.1016/j.ijhydene.2016.06.083.
  • [23] Fotia, M. L., Hoke, J. and Schauer, F., 2018, Study of the ignition process in a laboratory scale rotating detonation engine. Exp. Therm. Fluid Sci, 94, pp. 345-354. 10.1016/j.expthermflusci.2017.11.002.
  • [24] Dunlap, R., 1958, A preliminary study of the application of steady-state detonative combustion to a reaction engine. Jof Jet Pro, 28(7), pp. 451-456.
  • [25] Gross, R. A., 1963, Oblique detonation waves. AIAA J, 1(5), pp. 1225-1227.
  • [26] Ostrander, M., Hyde, J., Young, M., et al.,1987, “Standing oblique detonation wave engine performance.” 23rd Joint Propulsion Conference. 1987-2002. 10.2514/6.1987-2002.
  • [27] Ren, Z., Wang, B., Xiang, G., et al., 2018, Effect of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilization. j. Fluid Mech, 846, pp. 411-427. 10.1017/jfm.2018.289.
  • [28] Ren, Z., Wang, B., Xiang, G., et al., 2019, Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proc. Combust. Inst, 37(3), pp. 3627-3635. 10.1016/j.proci.2018.08.038.
  • [29] Ashford, S. A. and Emanuel, G., 1996, Oblique detonation wave engine performance prediction. J. Propul. Power, 12(2), pp. 322-327. 10.2514/3.24031.
  • [30] Pratt, D. T., Humphrey, J. W. and Glenn, D. E., 1991, Morphology of standing oblique detonation waves. J. Propul. Power, 7(5), pp. 837-845. 10.2514/3.23399.
  • [31] Miao, S., Zhou, J., Lin, Z., et al., 2018, Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves. AIAA J, 56(8), pp. 3112-3122. 10.2514/1.j056887
  • [32] Valorani, M., Giacinto, M. and Buongiorno, C., 2001, Performance prediction for oblique detonation wave engines (ODWE). Acta Astronaut, 48(4), pp. 211-228. 10.1016/S0094-5765(00)00161-2
  • [33] Sislian, J. P., Schirmer, H., Dudebout, R., et al., 2001, Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. J. Propul. Power, 17(3), pp. 599-604. 10.2514/2.5783.
  • [34] Hoffmann, N., 1940, Reaction Propulsion by Intermittent Detonative Combustion. Ministry of Supply, Volkenrode Ranslation.
  • [35] Kailasanath, K., 2000, Review of propulsion application of detonation waves, AIAA J., 38(9), pp. 1698-1708. 10.2514/2.1156.
  • [36] Kailasanath, K., 2003, Recent developments in the research on pulse detonation engines, AIAA J., 41(2), pp. 145-159. 10.2514/6.2002-470.
  • [37] Kindracki, J. Experimental research and numerical calculation of the rotating detonation, Ph. D. thesis (in Polish).
  • [38] Shunsuke, T., Morozumi, T., Matsuoka, K., Kasahara, J., et. al., 2014, Study on pulse detonation rocket engine using flight test demonstrator “Todoroki II”, AIAA 2014-4033. 10.2514/6.2014-4033.
  • [39] Kailasanath, K., 2009, Research on pulse detonation combustion system-a status report, AIAA 2009-631. 10.2514/6.2009-631.
  • [40] Bussing, T. and Pappas, G., 1994, Introduction to pulse detonation engines, AIAA Paper 94-0263.
  • [41] Wintenberger, E. and Shepherd, J. E., 2006, Thermodynamic cycle analysis for propagating detonations, J. Propul. Power, 22(3), pp. 694-698. 10.2514/1.12775.
  • [42] Anderson, S. D., Tonouchi, J. H., Lidstone, G. L., et al., 2004, Performance trends for a product scale pulse detonation engine, AIAA 2004-3402. 10.2514/6.2004-3402.
  • [43] Lu, J., Zheng, L., Qiu, H., et al., 2016, Performance investigation of a pulse detonation turbine engine, Proc. IME G J. Aero. Eng., 230(2), pp. 350-359. 10.1177/0954410015591834.
  • [44] Yan, C. and Fan, W., 2005, “Theory and key technology of pulse detonation engine.” Northwestern Polytechnical University Press. Xi`an, China.
  • [45] Hinkey, J. B., Williams, J. T., Henderson, S. E., et al., 1997, Rotary-valved, multiple-cycle, pulse detonation engine experimental demonstration, AIAA 1997-2746. 10.2514/6.1997-2746.
  • [46] Gustavsson, J., Nori, V. and Segal, C., 2003, Inlet/engine interactions in an axisymmetric pulse detonation engine system, j. Propul. Power, 19(2), pp. 282-286. 10.2514/2.6109.
  • [47] Rasheed, A., Glaser, A., Dunton, R. A., et al., 2008, Experimental and numerical investigation of a valved multi-tube PDE, AIAA 2008-110. 10.2514/6.2008-110.
  • [48] Matsuoka, K., Esumi, M., Kasahara, J., et al., 2010, Study on valve systems for pulse detonation engines, AIAA 2010-6672. 10.2514/6.2010-6672.
  • [49] Shimo, M. and Heister, S. D., 2008, Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors, J. Propul. Power, 24(2), pp. 336-344. 10.2514/1.29546.
  • [50] Peng, C., Fan, W., Zheng, L., et al., 2012, Experimental investigation on valves air-breathing dual-tube pulse detonation engines, Appl. Therm. Eng., 51(1-2), pp. 1116-1123. 10.1016/j.applthermaleng.2012.10.026.
  • [51] Lu, J., Zheng, L., Wang, Z., et al., 2015, Operating characteristics and propagation of backpressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor, Exp. Therm. Fluid Sci., 61, pp. 12-23. 10.1016/j.expthermflusci.2014.10.010.
  • [52] Lu, J., “Investigations on key technologies of the pulse detonation turbine engine.” Northwestern Polytechnical University.
  • [53] Rasheed, A., Tangirala, V. E., Vandervort, C. L., et al., 2004, Interactions of a pulsed detonation engine with a 2D blade cascade, AIAA 2004-1207. 10.2514/6.2004-1207.
  • [54] Carlos, X., Olivier, P., Tomas, G., et al., 2018, The efficiency of a pulsed detonation combustor-axial turbine integration, Aero. Sci. Technol., 82-83, pp. 80-91. 10.1016/j.ast.2018.08.038.
  • [55] Glaser, A., Caldwell, N. and Gutmark, E., 2007, Performance of an axial flow turbine driven by multiple pulse detonation combustors, AIAA Paper 2007-1244. 10.2514/6.2007-1244.
  • [56] Fernelius, M., Gorrell, S., Hoke, J., et al., 2013, Effect of periodic pressure pulses on axial turbine performance, AIAA Paper 2013-3687. 10.2514/6.2013-3687.
  • [57] George, St A., Driscoll, R., Gutmark, E., et al., 2014, Experimental comparison of axial turbine performance under steady and pulsating flows, ASME J. Turbomach., 136(11), pp. 111005. 10.1115/1.4028115.
  • [58] Roux, J. A., 2015, Parametric cycle analysis of an ideal pulse detonation engine, J. Thermophys. Heat Transf., 29(4), pp. 671-677. 10.2514/1.T4515.
  • [59] Hutchins, T. E. and Metghalchi, M., 2003, Energy and exergy analysis of the pulse detonation engine, ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075-1080. 10.1115/1.1610015.
  • [60] Endo, T., Kasahara, J., Matsuo, A., et al., 2004, Pressure history at the thrust wall of a simplified pulse detonation engine, AIAA J., 42(9), pp. 1921-1930. 10.2514/1.976.
  • [61] Chen, W., Fan, W., Qiu, H., et al., 2012, Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater, Aero. Sci. Technol., 23(1), pp. 206-212. 10.1016/j.ast.2011.07.002.
  • [62] Li, J., Fan, W., Wang, Y., et al., 2010, Performance analysis of the pulse detonation rocket engine based on constant volume cycle model, Appl. Therm. Eng., 30(11-12), pp. 1496-1504. 10.1016/j.applthermaleng.2010.03.017.
  • [63] Ma, F., Choi, J. Y. and Yang, V., 2006, Propulsive performance of airbreathing pulse detonation engines, J. Propul. Power, 22(6), pp. 1188-1203. 10.2514/1.21755.
  • [64] Schwer, D. A. and Kailasanath, K., 2011, Numerical study of the effects of engine size on rotating detonation engines, AIAA 2011-581. 10.2514/6.2011-581.
  • [65] Kaemming, T. A., Fotia, M. L., Hoke, J., et al., 2017, Thermodynamic modeling of a rotating detonation engine through a reduced-order approach, j. Propul. Power, 33(5), pp. 1170-1178. 10.2514/1.B36237.
  • [66] Bykovskii, F. A., Zhdan, S. A. and Vedernikov, E. F., 2006, Continuous spin detonations, J. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.
  • [67] Suchocki, J., Yu, S., Hoke, J., et al., 2012, Rotating detonation engine operation, AIAA Paper 2012-0119. 10.2514/6.2012-119.
  • [68] Liu, S., Liu, W., Lin, Z., et al., 2015, Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary, Combust. Sci. Technol., 187, pp. 1790-1804. 10.1080/00102202.2015.1019620.
  • [69] Xie, Q., Wen, H., Li, W., et al., 2018, Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition, Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.062.
  • [70] Saracoglu, B. H. and Ozden, A., 2018, The effects of multiple detonation waves in the RDE flow field, Transp. Res. Proc., 29, pp. 390-400. 10.1016/j.trpro.2018.02.035.
  • [71] Tsuboi, N., Eto, S., Hayashi, A. K., et al., 2017, Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine, J. Propul. Power, 33(1) pp. 100-111. 10.2514/1.B36095.
  • [72] Katta, V. R., Cho, K. Y., Hoke, J. L., et al., 2019, Effect of increasing channel width on the structure of rotating detonation wave, Proc. Combust. Inst., 37(3), pp. 3575-3583. 10.1016/j.proci.2018.05.072.
  • [73] Ji, Z., Zhang, H. and Wang, B., 2019, Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerosp. Sci. Technol., 92, pp. 806-819. 10.1016/j.ast.2019.07.011.
  • [74] Ji, Z., 2019, Comprehensive performance analysis of the continuous rotating detonation based airbreathing propulsion systems, PhD Dissertation, Tsinghua University.
  • [75] Ji, Z., Zhang, H., Wang, B., and He, W. (January 10, 2020). Comprehensive Performance Analysis of the Turbofan With a Multi-Annular Rotating Detonation Duct Burner. ASME. J. Eng. Gas Turbines Power, 142(2), p. 021007. 10.1115/1.4045518.
  • [76] Schwer, D. A. and Kailasanath, K., 2012, Feedback into mixture plenums in rotating detonation engines, AIAA Paper, 2012-0617. 10.2514/6.2012-617.
  • [77] Schwer, D. A. and Kailasanath, K., 2013, On reducing feedback pressure in rotating detonation engines, AIAA Paper, 2013-1178. 10.2514/6.2013-1178.
  • [78] Anand, V., George, St A., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor, Exp. Therm. Fluid Sci., 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.
  • [79] Zhou, S., Ma, H., Li, S., et al., 2017, Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics, Int. J. Hydrog. Energy, 42, pp. 20297-20305. 10.1016/j.ijhydene.2017.06.115.
  • [80] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor, Int. J. Hydrog. Energy, 42, pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.
  • [81] Liu, z., Braun, J., and Paniagua, G., 2018, Three dimensional optimization for subsonic axial turbines operating at high unsteady inlet Mach number, AIAA Paper 2018-4480. 10.2514/6.2018-4480.
  • [82] Liu, Z., Braun, J., and Paniagua, G., 2019, Characterization of a supersonic turbine downstream of a rotating detonation combustor, ASME J. Eng. gas Turbines Power, 141(3), pp. 031501. 10.1115/1.4040815.
  • [83] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine, Appl. Mech. Mater. 782, pp. 3-12. 10.4028/www.scientific.net/AMM.782.3.
  • [84] Naples, A., Hoke, J., Battelle, R., Wagner, M. and Schauer, F., 2017, Rotating detonation engine implementation into an open-loop T63 gas turbine engine, AIAA Paper 2017-1747. 10.2514/6.2017-1747.
  • [85] Sousa, J., Paniagua, G. and Morata, E. C., 2017, Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor, Appl. Energy, 195, pp. 247-256. 10.1016/j.apenergy.2017.03.045.
  • [86] Ji, Z., Zhang, H. and Wang, B., 2019, Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine, Proc. IME G J. Aero. Eng., 233(13), pp. 4810-4824. 10.1177/0954410019830816.
  • [87] Segal, C., 2009, The scramjet engine: processes and characteristics. 1st ed. New York: Cambridge University Press.
  • [88] Ji, Z., Zhang, H., Xie, Q., et al., 2018, Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine, J. Tsinghua Univ. (Sci. Technol.), 58(10),pp. 899-905. 10.16511/j.cnki.qhdxxb.2018.26.040.
  • [89] Braun, E. M., Lu, F. K., Wilson, D. R., et al., 2013, Airbreathing rotating detonation wave engine cycle analysis, Aerosp. Sci. Technol., 27(1), pp. 201-208. 10.1016/j.ast.2012.08.010.
  • [90] Mizener, A. R. and Lu, F. K., 2017, Low-order parametric analysis of a rotating detonation engine in rocket mode, J. Propul. Power, 33, pp. 1543-1554. 10.2514/1.B36432
  • [91] Fievisohn, R. T. and Yu, K. H., 2017, Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propul. Power, 33(1), pp. 89-99. 10.2514/1.B36103
  • [92] Sousa, J., Braun, J. and Paniagua, G., 2017, Development of a fast evaluation tool for rotating detonation combustors, Appl. Math. Model, 52, pp. 42-52. 10.1016/j.apm.2017.07.019
  • [93] Voitsekhovskii, B. V., 1959, Statsionarnaya dyetonatsiya. Doklady Akademii Nauk SSSR, 129(6), pp. 1254-1256.
  • [94] Bykovskii, F. A. Zhdan, S. A., 2013, Continuously detonation engine. Doklady Akademii Nauk.
  • [95] Bykovskii, F. A. Mitrofanov, V. V. Vedernikov, E. F., 1997, Continuous detonation combustion of fuel-air mixtures. Combust. Explos. Shock Waves, 33(3), pp. 344-353. 10.1007/BF02671875.
  • [96] Bykovskii, F. A. and Mitrofanov, V. V., 2000, “A continuous spin detonation in liquid fuel sprays.” Control of Detonation Processes, edited by G. D. Roy, S. M. Frolov, D. W. Netzer, and A. A. Borisov, Elex-KM Publishers, Moscow, pp. 209-211.
  • [97] Bykovskii, F. A. and Vedernikov, E. F., 2003, Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves, 39(3), pp. 323-334. 10.1023/A:1023800521344.
  • [98] Bykovskii, F. A. Zhdan, S. A., Vedernikov, E. F., 2005, Continuous spin detonation in annular combustors. Combust., Explos. Shock Waves, 41(4), pp. 449-459. 10.1007/s10573-005-0055-6.
  • [99] Bykovskii, F. A., Zhdan, S. A., Vedernikov, E. F., 2006, Continuous spin detonation of fuel-air mixtures.Combust., Explos. Shock Waves, 2006, 42(4), pp. 463-471. 10.1007/s10573-006-0076-9.
  • [100] Bykovskii, F. A., Zhdan, S. A., Vedernikov, E. F., 2006, Continuous spin detonations. J. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.
  • [101] Frolov, S. M., Aksenov, V. S., Ivanov, V. S., 2015, Experimental proof of Zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture. Int. J. Hydrogen Energy, 40(21), pp. 6970-6975. 10.1016/j.ijhydene.2015.03.128.
  • [102] Frolov, S. M., Aksenov, V. S., Gusev, P. A., Ivanov, V. S., Medvedev, S. N., et al., 2015, Experimental studies of small samples bench engine with a continuously-detonation combustors. Gorenie Vzryv, 8(1), pp. 151-163.
  • [103] Frolov, S. M., Aksenov, V. S., Ivanov, V. S., et al., 2015, Large-scale hydrogen-air continuous detonation combustor. Int. J. Hydrogen Energy, 40(3), pp. 1616-1623. 10.1016/j.ijhydene.2014.11.112.
  • [104] Frolov, S. M., Aksenov, V. S., Dubrovskii, A .V., et al., 2015, Energy efficiency of a continuous detonation combustion chamber. Combust. Explos. Shock Waves, 51(2), pp. 232-245. 10.1134/S0010508215020070.
  • [105] Frolov, S. M., Zvegintsev, V. I., Ivanov, V. S., et al., 2017, Demonstrator of continuous detonation air-breathing ramjet: Wind tunnel data. Doklady Physical Chemistry, 474(1), pp. 75-79. 10.1134/S0012501617050013.
  • [106] The first successful test launch of a new generation of green propellant liquid fuel rocket engine in Russia, 2016, from http://fpi.gov.ru/press/news/20160826.
  • [107] Nicholls, J. A., 1962, “The feasibility of a rotating detonation wave rocket motor. Feasibility of A Rotating Detonation Wave Rocket Motor.” The University of Michigan.
  • [108] Russo, R., King, P., Schauer, F. and Lewis, T., 2013, Characterization of Pressure Rise Across a Continuous Detonation Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 10.2514/6.2011-6046.
  • [109] Russo, Rachel M., 2011, “Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air.” Theses and Dissertations. 1352. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
  • [110] Shank, J., King, P., Karnesky, J., et al., 2012, “Development and testing of a modular rotating detonation engine.” 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA 2012-0120. 10.2514/6.2012-120.
  • [111] Shank, J. C., 2012, “Development and testing of a rotating detonation engine run on hydrogen and air.” Thesis. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
  • [112] Thomas, L., Schauer, F., Hoke, J., et al., 2011, “Buildup and operation of a rotating detonation engine.” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-602. 10.2514/6.2011-602.
  • [113] Tellefsen, J., King, P., Schauer, F. and Hoke, J., 2012, “Analysis of an RDE with convergent nozzle in preparation for turbine integration.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-0773. 10.2514/6.2012-773.
  • [114] Tellefsen, J., 2012, “Build up and operation of an axial turbine driven by a rotary detonation engine.” Theses and Dissertations, Air Force Inst of Tech Wright-Patterson Afb oh graduate School of Engineering and Management. 1071. https://scholar.afit.edu/etd/1071.
  • [115] Fotia, M., Kaemming, T. A., Hoke, J., et al., 2015, “Study of the experimental performance of a rotating detonation engine with nozzle exhaust flow.” 53rd AIAA Aerospace Sciences Meeting. AIAA 2015-0631. 10.2514/6.2015-0631.
  • [116] Fotia, M., 2015, Update on Air Breathing Detonation Driven Propulsion Research. International Workshop on Detonation for Propulsion.
  • [117] Fotia, M., Hoke, J., Schauer, F., 2017, Experimental performance scaling of rotating detonation engines operated on gaseous fuels. J. Propul. Power, Vol. 33(5), pp. 1-10. 10.2514/1.B36213.
  • [118] Fotia, M., 2016, Thermodynamics Modelling and the Operation of Rotating Detonation Engines at Elevated Inlet Temperatures. International Workshop on Detonation for Propulsion.
  • [119] Theuerkauf, S. W., Schauer, F., Anthony, R., et al., 2014, “Average and Instantaneous Heat Release to the Walls of an RDE.” 52nd Aerospace Sciences Meeting. 1503.
  • [120] Theuerkauf, S. W., Schauer, F., Anthony, R., et al., 2015, “Experimental characterization of high-frequency heat flux in a rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1603.
  • [121] Theuerkauf, S. W., Schauer, F., Anthony, R., et al., 2016, “Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine.” 54th AIAA Aerospace Sciences Meeting. 1200.
  • [122] Braun, J. Sousa, J. Paniagua, G., 2016, “Assessment of the boundary layer within a Rotating Detonation Combustor.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4557.
  • [123] Meyer, S. J., Polanka, M. D., Schauer, F., et al., 2017, Experimental Characterization of Heat Transfer Coefficients in a Rotating Detonation Engine.” 55th AIAA Aerospace Sciences Meeting. 1285.
  • [124] Rankin, B. A., Richardson, D. R., Caswell, A. W., et al., 2015, Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1604.
  • [125] Rankin, B. A., Richardson, D. R., Caswell, A. W., et al., 2017, Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame, 176(1), pp. 12-22. 10.1016/j.combustflame.2016.09.020.
  • [126] Kailasanath, K., 2011, “The Rotating Detonation-Wave Engine Concept: A Brief Status Report.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 580.
  • [127] Kailasanath, K., 2017, “Recent developments in the research on rotating-detonation-wave engines.” 55th AIAA Aerospace Sciences Meeting. 0784.
  • [128] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.
  • [129] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.
  • [130] Schwer, D. and Kailasanath, K., 2011, “Numerical Study of the Effects of Engine Size n Rotating Detonation Engines.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 581.
  • [131] Schwer, D. and Kailasanath, K., 2012, “Feedback into mixture plenums in rotating detonation engines.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 617.
  • [132] Schwer, D. and Kailasanath, K., 2016, Characterizing NOx Emissions for Air-Breathing Rotating Detonation Engines.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4779.
  • [133] Edward, D. L., Jeffrey, S., et al., 2015, “Rotating Detonation Combustion for gas Turbines – Modeling and System Synthesis to Exceed 65% Efficiency goal.” University Turbine Systems Research Workshop. 23983.
  • [134] Ferguson, D., 2016, “Overview of Pressure gain Combustion Studies at NETl.” University Turbine Systems Research Workshop. 2301.
  • [135] Anand, V., George, A. S., Driscoll, R., et al., 2015, Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy, 40(46), pp. 16649-16659. 10.1016/j.ijhydene.2015.09.046.
  • [136] Anand, V., George, A. S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.
  • [137] Anand, V., George, A. S., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behawior in a rotating detonation combustor. Exp. Therm. Fluid Sci, 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.
  • [138] Driscoll, R., Aghasi, P., George, S. A., et al., 2016, Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy, 41(9), pp. 5162-5175. 10.1016/j.ijhydene.2016.01.116.
  • [139] Suchocki, J., Yu, S. T., Hoke, J., et al., 2012, “Rotating detonation engine operation.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 119.
  • [140] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.
  • [141] Braun, E., Balcazar, T. S., Wilson, D. R., et al., 2012, Experimental Study of a High-Frequency Fluidic Valve Fuel Injector. J. Propul. Power, 28(5), pp. 1121-1125. 10.2514/1.B34442
  • [142] Heister, S., Slabaugh, C., et al., 2016, “Advancing Pressure Gain Combustion in Terrestrial Turbine Systems.” University Turbine Systems Research Workshop. 1004.
  • [143] Daniau, E., Falempin, F., Getin, N., et al., 2006, Design of a continuous detonation wave engine for space application.” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 4794.
  • [144] Falempin, F., Daniau, E., Getin, N., et al., 2006, “Toward a continuous detonation wave rocket engine.” 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 7956.
  • [145] Falempin, F. and Daniau, E., 2008, “A contribution to the development of actual continuous detonation wave engine.” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2679.
  • [146] Falempin, F. and Naour, B., 2009, “R&T effort on pulsed and continuous detonation wave engines.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7284.
  • [147] Falempin, F., Naour, B. and Miquel, F., 2011, “Recent experimental results obtained on continuous detonation wave engine.” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2235.
  • [148] Eude, Y., Davidenko, D., Falempin, F., et al., 2011, “Use of the adaptive mesh refinement for 3D simulations of a CDWRE (continuous detonation wave rocket engine).” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2236.
  • [149] Davidenko, D., Eude, Y., Falempin, F., 2009, “Numerical study on the annular nozzle optimization for rocket application.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7390.
  • [150] Wolanski, P. and Kindracki, J., 2009, Research on continuous rotating detonation and its applications to jet propulsion. ISABE, 2009-1313.
  • [151] Kindracki J., Wolański, P., Gut, Z., 2011, Experimental research on the rotating detonation in gaseous fuels-oxygen mixture. Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.
  • [152] Kindracki, J., 2012, Experimental studies of kerosene injection into a model of a detonation chamber. J. Power Technol., 92(2), p. 80.
  • [153] Kindracki, J., 2015, Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol., 43, pp. 445-453. 10.1016/j.ast.2015.04.006.
  • [154] Tobita, A., Fujiwara, T., Wolanski, P., 2010, “Detonation engine and flying object provided therewith.” U.S. Patent, 7,784,267.
  • [155] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine.” Applied Mechanics and Materials, 782, pp. 3-12. 10.4028/www.scientific.net/amm.782.3.
  • [156] Kindracki, J., 2016, Recent research on the rotating detonation at Warsaw University of Technology. Transactions of the Institute of Aviation, 245, pp. 37-45.
  • [157] Kawalec, M., Wolański, P., et al., 2016, “Influence of mixture on performance of rotating detonation rocket engine.” International Constant and Volume and Detonation Combustion Workshop.
  • [158] Wolański, P., 2018, “Research Progress in Poland.” International Workshop on Detonation for Propulsion.
  • [159] Folusiak, M., Kobiera, A. and Wolański, P., 2010, Rotating detonation engine simulations in-house code-REFloPS. Transactions of the Institute of Aviation, 207, pp. 3-12.
  • [160] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2011, “Graphics Processors as a tool for rotating detonation simulations.” 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine.
  • [161] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Assessment of numerical simulations of RDE combustion chamber”. 24th ICDERS, Taipei, Taiwan.
  • [162] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Improving accuracy and performance of Rotating Detonation Engine simulations.” European Conference for AeroSpace Sciences.
  • [163] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Three-dimensional numerical simulations of the combustion chamber of the rotating detonation engine. Journal of KONES, 20(1), pp. 83-88.
  • [164] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Numerical tools for three dimensional simulations of the rotating detonation engine in complex geometries. Journal of KONES, 20(1), pp. 329-336.
  • [165] Swiderski, K., Folusiak, M., Lukasik, B., et al., 2013, Three-dimensional numerical study of the propulsion system based on rotating detonation using Adaptive Mesh Refinement. ICDERS, Taipei, Taiwan.
  • [166] Hishida, M., Fujiwara, T., Wolański, P., 2009, Fundamentals of rotating detonations. Shock waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.
  • [167] Hayashi, A. K., Kimura, Y., Yamada, T., et al., 2009, “Sensitivity analysis of rotating detonation engine with a detailed reaction model.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 633.
  • [168] Tsuboi, N., Watanabe, Y., Kojima, T., et al., 2015, Numerical estimation of the thrus performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proc. Combust. Inst., 35(2), pp. 2005-2013.
  • [169] Yamada, T., Hayashi, A. K., Tsuboi, N., et al., 2010, “Numerical analysis of threshold of limit detonation in rotating detonation engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 153.
  • [170] Tsuboi, N., Hayashi, A. K., et al., 2016, “Simulation on rotating detonation engine: effects of converging-diverging nozzle, non-uniform injection, and hydrocarbon-fueled detonation.” International Workshop on Detonation for Propulsion.
  • [171] Kasahara, J., Kato, Y., Ishihara, K., et al., 2016, “Research and development of rotating detonation engine for upper-stage kick motor system.” International Workshop on Detonation for Propulsion.
  • [172] Yi, T. H., Turangan, C., Lou, J., et al., 2009, “A three-dimensional numerical study of rotational detonation in an annular chamber.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 634.
  • [173] Yi, T. H., Lou, J., Turangan, C., et al., 2010, “Effect of Nozzle Shapes on the Performance of Continuously-Rotating Detonation Engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 152.
  • [174] Yi, T. H., Lou, J., Turangan, C., et al., 2011, Propulsive performance of a continuously rotating detonation engine. J. Propul. Power, 27(1), pp. 171-181. 10.2514/1.46686.
  • [175] Choi, J. Y., 2016, “Research progress of detonation studies for propulsion in PNU.” International Workshop on Detonation for Propulsion.
  • [176] Liu, S. J., Lin, Z. Y., Sun, M. B., et al., 2010, Two-dimensional numerical simulation of rotating detonation wave engine. J. Propul. Technol, 31(5), pp. 634-640 (in Chinese).
  • [177] Liu, S. J., Qin, H., Lin, Z. Y., et al., 2011, Detailed structure and propagating mechanism research on continuous rotating detonation wave. J. Propul. Technol, 32(3), pp. 431-436 (in Chinese).
  • [178] Liu, S. J. Lin, Z. Y., Sun, M. B., et al., 2010, Numerical Simulation of Cell Detonation Using Different Chemical Reacting Source Term Methods. J. Natl. Univ. Def. Technol., 5, pp. 01-06 (in Chinese).
  • [179] Liu, S. J. Lin, Z. Y., Sun, M. B., et al., 2011, Thrust vectoring of a continuous rotating detonation engine by changing the local injection pressure. Chin. Phys. Lett., 28(9), pp. 094704.
  • [180] Liu, S. J., Lin, Z. Y., Liu, W. D., et al., 2012, Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor. Combust. Sci. Technol., 184(9), pp. 1302-1317. 10.1080/00102202.2012.682669.
  • [181] Liu, S. J., Lin, Z. Y., Liu, W. D., et al., 2013, Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(2), pp. 326-341. 10.1177/0954410011433542.
  • [182] Lin, W., Zhou, J., Lin, Z. Y., et al., 2015, Numerical simulation of detonation onset by hot jets. J. Natl. Univ. Def. Technol., 37(1), pp. 70-77 (in Chinese).
  • [183] Zhou, Z. L., Liu, W. D., Liu, S. J., et al., 2013, Investigation on Propagation Process of Detonation Wave Influenced by lateral Expansion. J. Propul. Technol, 34(5), pp. 713-720 (in Chinese).
  • [184] Wang, D., Zhou, J. and Zhou, Z. L., 2015, Numerical Simulation on the Working Process of the Hydrogen-Oxygen Continuous Rotating Engine with an Expansive Nozzle. Tactical Missile Technology, 2015(6), pp. 57-65 (in Chinese).
  • [185] Liu, S. J., Liu, W. D., Lin, Z. Y., et al., 2017, “Experimental Research on the Continuous Rotating Detonation Ramjet Engine.” The 9th National Hypersonic Technology Conference.
  • [186] Ma, H., Feng, F., Wu, X. S., et al., 2012, Effect of Pressure Condition on Rotating Detonation Engine. J. Ballist., 24(4), pp. 94-98.
  • [187] Chen, J., Wang, D., Ma, H., et al., 2013, Influence of Axial Length on Rotating Detonation Engine. J. Aerosp. Power, 28(4), pp. 844-849 (in Chinese).
  • [188] Gao, J., Wu, X. S., Ma, H., et al., 2016, Experiment of Effect of Nozzle Shapes on the Performance of Rotating Detonation Engine. J. Aerosp. Power, 31(10), pp. 2443-2453 (in Chinese).
  • [189] Gao, J., Wu, X. S., Ma, H., et al., 2016, Experimental Research on Rotating Detonation Engines with Different Combustion Chamber Length. J. Propul. Technol, 37(10), pp. 1991-2000 (in Chinese).
  • [190] Zhou, S. B., Wang, D., Ma, H., et al., 2016, “Experimental Study on Rotating Detonation with Small Oxidizer Injection Area.” The first joint conference on Aerospace Power (in Chinese).
  • [191] Xu, C., Ma, H., Yan, Y., et al., 2017, Experimental Study on Operating Characteristics of Rotating Detonation Engine. J. Ballist., 29(3), pp. 74-81 (in Chinese).
  • [192] Ma, H., Feng, F., Wu, X. S., et al., 2012, Effect of pressure condition on rotating detonation engine. J. Ballist., 24(4), pp. 94-98.
  • [193] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor. Int. J. Hydrogen Energy, 42(21), pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.
  • [194] Peng, l., Wang, D., Wu, X., et al., 2015, Ignition experiment with automotive spark on rotating detonation engine. Int. J. Hydrogen Energy, 40(26), pp. 8465-8474. 10.1016/j.ijhydene.2015.04.126.
  • [195] Zheng, Q., Weng, C. S. and Bai, Q. D., 2014, Experiment on Continuous Rotating Detonation Engine with Tilt Slot Injector. J. Propul. Technol., 35(4), pp. 570-576 (in Chinese).
  • [196] Zheng, Q., Weng, C. S. and Bai, Q. D., 2015, Experimental Study on Effects of Equivalence Ratio on Detonation Characteristics of Liquid-Fueled Rotating Detonation Engine. J. Propul. Technol, 36(6), pp. 947-952 (in Chinese).
  • [197] Li, B. X. and Weng, C. S., 2018, Influence of Liquid Fuel on the Detonation Characteristics of Continuous Rotating Detonation Engine. Explosion and Shock Waves, 38(2), pp. 331-338 (in Chinese).
  • [198] Wang, Y. Y. and Weng, C. S., 2013, Effects of Nozzle on Flow Field and Performance of Multi-Cycle Two-Phase Pulse Detonation Engines. J. Aerosp. Power, 28(10), pp. 2256-2266 (in Chinese).
  • [199] Shao, Y. T., Liu, M., Wang, J. P., 2009, Numerical Simulation of Continuous Rotating Detonation Engine in Column Coordinate. J. Propul. Technol, 30(6), pp. 717-721 (in Chinese).
  • [200] Tang, X. M., Wang, J. P. and Shao, Y. T., 2013, 3-D Simulation of Rotating Detonation Wave in Combustion Chambers Without Inner Wall. J. Aerosp. Power, 28(4), pp. 792-799 (in Chinese).
  • [201] Wu, D., Liu, Y., Wang, J. P., 2015, Three-Dimensional Numerical Simulation of the Parametric Properties of Continuously Rotating Detonation Engine. J. Aerosp. Power, 30(7), pp. 1576-1582 (in Chinese).
  • [202] Shao, Y. T. and Wang, J. P., 2009, Two-Dimensional Simulation of Continuous Detonation Engine. J. Aerosp. Power, 24(5), pp. 980-987 (in Chinese).
  • [203] Wu, D. and Wang, J. P., 2012, Influences of Viscosity and Thermal Conductivity on Detonation Waves. Chin. J. Appl. Mech, 29(6), pp. 630-635 (in Chinese).
  • [204] Wang, Y., Wang, J. P., Li, Y., et al., 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow. Int. j. Hydrogen Energy, 39(22), pp. 11792-11797. 10.1016/j.ijhydene.2014.05.162.
  • [205] Wu, D., Liu, Y., Liu, Y., et al., 2014, Numerical investigations of the restabilization of hydrogen-air rotating detonation engines. Int. J. Hydrogen Energy, 39(28), pp. 15803-15809. 10.1016/j.ijhydene.2014.07.159.
  • [206] Zhou, R. and Wang, J. P., 2012, Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust. Flame, 159(12), pp. 3632-3645. 10.1016/j.combustflame.2012.07.007.
  • [207] Shao, Y. T., Li, M. and Wang, J. P., 2010, Continuous detonation engine and effects of differenttypes of nozzle on its propulsion performance. Chin. J. Aeronaut, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.
  • [208] Shao, Y. T., Liu, M. and Wang, J. P., 2010, Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol., 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.
  • [209] Shao, Y. T. and Wang, J. P., 2010, Change in continuous detonation wave propagation mode from rotating detonation to standing detonation. Chin. Phys. Lett., 27(3), pp. 034705. 10.1088/0256-307X/27/3/034705.
  • [210] Tang, X. M., Wang, J. P. and Shao, Y. T., 2015, Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame, 162(4), pp. 997-1008. 10.1016/j.combustflame.2014.09.023.
  • [211] Wang, Y. and Wang, J., 2015, Effect of equivalence ratio on the velocity of rotating detonation. Int. J. Hydrogen Energy, 40(25), pp. 7949-7955. 10.1016/j.ijhydene.2015.04.072.
  • [212] Xie, Q. and Wang, B., 2014, “Performance analysis of rotating detonation rocket based combined cycle propulsion.” 6th European Conference For Aeronautics and Space Sciences.
  • [213] Xie, Q. and Wang, B., 2015, “Performance analysis of propulsion powered by rotating detonation rocket based combined cycle.” 22rd International Society for Air Breathing Engines.
  • [214] Wang, B., Xie, Q. and Zhang, H., 2013, “Key technical analysis of liquid rocket based combined cycle propulsion.” 21rd International Society for Air Breathing Engines.
  • [215] Wang, B., Xie, Q., Zou, M., et al., 2013, “Theoretic analysis of ejector mode of rocket based combined cycle propulsion.” 5th European Conference For Aeronautics and Space Sciences.
  • [216] Wang, B., Xie, Q. and Wen, H., 2016, “Stabilities of rotation detonation.” 1st International Conference in Aerospace for Young Scientists.
  • [217] Wen, H., Xie, Q. and Wang, B., 2017, “Stabilities of rotation detonation.” 31st International Symposium on Shock Waves-Part 1: fundamentals, Springer.
  • [218] Xie, Q., Wen, H., Li, W., Ji, Z., Wang, B., et al., 2018, Analysis of Operating Diagram for H2/Air Rotating Detonation Combustors under Lean Fuel Condition. Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.062
  • [219] Xie, Q., Wang, B., Wen, H., et al., 2018, Thermoacoustic Instabilities in an Annular Rotating Detonation Combustor Under Off-Design Condition. J. Propul. Power, 35(1), pp. 141-151. 10.2514/1.B37044.
  • [220] Xie, Q., Wang, B., Wen, H., et al., 2019, Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air. Proc. Combust. Inst., 37(3), pp. 3425-3432. 10.1016/j.proci.2018.08.046.
  • [221] Frolov, S. M., Dubrovskii, A. V., Ivanov, V. S., 2013, Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian Journal of Physical Chemistry B, 7(1), pp. 35-43. 10.1134/S1990793113010119.
  • [222] Schwer, D. and Kailasanath, K., 2011, Numerical investigation of the physics of rotating detonation-engines. Proc. Combust. Inst., 33(2), pp. 2195-2202. 10.1016/j.proci.2010
  • [223] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.
  • [224] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.119.
  • [225] Wu, D., Zhou, R., Liu, M., et al., 2014, Numerical investigation of the stability of rotating detonation engines. Combust. Sci. Technol., 186(10-11), pp. 1699-1715. 10.1080/00102202.2014.935641.
  • [226] Thomas, G. O., Sutton, P. and Edwards, D. H., 1991, The behavior of detonation waves at concentration gradients. Combust. Flame, 84(3-4), pp. 312-322. 10.1016/0010-2180(91)90008-Y.
  • [227] Ishii, K and Kojima, M., 2007, Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves, 17(1-2), pp. 95-102. 10.1007/s00193-007-0093-y.
  • [228] Boeck, L. R., Berger, F. M., Hasslberger, J., et al., 2016, Detonation propagation in hydrogen-air mixtures with transverse concentration gradients. Shock Waves, 26(2), pp. 181-192. 10.1007/s00193-015-0598-8.
  • [229] Boulal, S., Vidal, P. and Zitoun, R., 2016, Experimental investigation of detonation quenching in non-uniform compositions. Combust. Flame, 2016, 172, pp. 222-233. 10.1016/j.combustflame.2016.07.022.
  • [230] Cullen, R. E., Nicholls, J. A. and Ragland, K. W., 1966, Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rockets, 3(6), pp. 893-898. 10.2514/3.28557.
  • [231] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.
  • [232] Bykovskii, F. A., Zhdan, S. A. and Vedernikov, E. F., 2014, Initiation of detonation of fuel-air mixtures in a flow-type annular combustor. Combustion, Explosion and Shock Waves, 50(2), pp. 214-222. 10.1134/S0010508214020130.
  • [233] Lu, F. K. and Braun, E., 2014, Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propul. Power, 30(5), pp. 1125-1142. 10.2514/1.B34802
  • [234] Lentsch, A., Bec, R., Serre, L., et al., 2005, “Overview of current French activities on PDRE and continuous detonation wave rocket engines.” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. 3232.
  • [235] Yang, C., Wu, X., Ma, H., et al., 2016, Experimental research on initiation characteristics of a rotating detonation engine. Exp. Therm. Fluid Sci, 71, pp. 154-163. 10.1016/j.expthermflusci.2015.10.019
  • [236] Dyer, R., Naples, A., Kaemming, T., et al., 2012, “Parametric testing of a unique rotating detonation engine design.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 121.
  • [237] Driscoll, R., Anand, V., George, A., et al., 2015, “Investigation on RDE operation by geometric variation of the combustor annulus and nozzle exit area.” 9th US National combustion meeting.
  • [238] Naples, A., Hoke, J., Schauer, F., 2014, “Rotating detonation engine interaction with an annular ejector.” 52nd Aerospace Sciences Meeting. 0287.
  • [239] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.
  • [240] Schwer, D., Corrigan, A., Taylor, B., et al., 2013, “On reducing feedback pressure in rotating detonation engines.” 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 1178.
  • [241] Fotia, M., Hoke, J. and Schauer, F., 2014, “Propellant plenum dynamics in a two-dimensional rotating detonation experiment.” 52nd AIAA Aerospace Sciences Meeting. 1013.
  • [242] Anand, V., George, A., Driscoll, R., et al., 2015, “Statistical treatment of wave instability in rotating detonation combustors.” 53rd AIAA Aerospace Sciences Meeting. 1103.
  • [243] Pan, Z., Fan, B., Zhang, X., et al., 2011, Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame, 158(11), pp. 2220-2228. 10.1016/j.combustflame.2011.03.016.
  • [244] Anand, V., George, A. S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.
  • [245] Yao, S., Liu, M. and Wang, J., 2015, Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combust. Sci. Technol., 187(12), pp. 1867-1878. 10.1080/00102202.2015.1067202.
  • [246] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. j. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.119
  • [247] Liu, S. J., Liu, W. D., Lin, Z. Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (I): One Direction Mode. J. Propul. Technol., 35(1), pp. 138-144 (in Chinese).
  • [248] Liu, S. J., Lu, W. D., Lin, Z. Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (II): Two-Wave Collision Propagation Mode. J. Propul. Technol., 35(2), pp. 269-275 (in Chinese).
  • [249] Wolanski, P., 2012, “Detonative propulsion.” Proceedings of the Combustion Institute, pp. 1-34.
Uwagi
1. The authors thank the support from the National Natural Science Foundation of China (No. 51676111), the China Postdoctoral Science Foundation (No. 2018M640140) and the China Postdoctoral Science Special Foundation (No. 2019T120100).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f54bc6b9-5d55-4d9c-a1c9-93659a9bbae6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.