PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical property evaluation aluminium 6061 nickel coated cenosphere composites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, among all the aluminium alloys, Al6061 is gaining much popularity as a matrix material to prepare MMCs owing to its excellent mechanical properties and good corrosion resistance. Fly ash cenospheres are primarily a by-product in power generation plants. Research is in progress to effectively use this byproduct to produce new usable and profitable materials as they pose major disposal and environmental problems. In the light of the above, the present investigation is aimed at development of metal coated cenosphere reinforced Al6061 composites and to characterize their mechanical properties. Al6061 nickel coated composites have been prepared by liquid metallurgy route by varying percentage of nickel coated cenospheres between 2-10% by weight in steps of 2%. Density, hardness and tensile behaviour of the composites is carried out. It is observed that there is an increase in the values of hardness, density of the composite with an increasing percentage of the nickel coated cenosphere reinforcements. There is also a notable increase in the tensile strength as well as reduction in ductility of the prepared composite. Fractographs to indicate the behaviour of the composites have also been depicted in the paper.
Rocznik
Strony
1381--1388
Opis fizyczny
Bibliogr. 27 poz., fot., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Birla Institute of Technology, Off-shore Campus, Ras Al Khaimah-41222, UAE
autor
  • Department of Mechanical Engineering, Birla Institute of Technology, Off-shore Campus, Ras Al Khaimah-41222, UAE
Bibliografia
  • [1] Drozhzhin, V. S., Piculin, I. V., Kuvaev, M. D.: Technical Monitoring of Microspheres from Fly Ashes of Electric Power Stations, Proceedings of World of Coal Ash Conference, Lexington, Kentucky, USA, 113-114, 2005.
  • [2] Asthana, A. J.: Reinforced cast metals, part II evolution of the interface. Journal Material Science, 35, 1998, 1959-1980.
  • [3] Chang S. V., Lin S. J.: Fabrication of SiCp reinforced copper matrix composites by electroless copper plating, Scientific Materials, 35, 225-231, 1996.
  • [4] Taneoka, O., Odawara, Y., Kaieda, S.: Combustion synthesis of the titanium- aluminum-boron system, Journal of American ceramic Society, 72, 1047-1049, 1989.
  • [5] Ramesh, C. S., Anwar Khan, A. R., Safiulla, M.: Wear and Corrosion Behaviour of Al6061-TiO2 Composites, Material Science Forum, 437-438, 317-320, 2003.
  • [6] Miller, W. S., Lensen, L. A., and Humphreys F. J.: The strength toughness and fracture behaviour in Aluminium-Lithium based metal matrix composites, Aluminium-Lithium, 5, 931-941, 1989.
  • [7] Yang, J., Cady, C., Hu, M. S., Zok, F., Mehrabian, R., Evans, A. G.: Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulate, Acta Metallurgical Materials, 38, 2613-2619, 1990.
  • [8] Niranjan, H. B.: Tensile and corrosive properties of Al Hematite composite, Proceedings of the First Australasian conference on Composite Materials, Osaka, Japan, 546-552, 1998.
  • [9] Gurlond, J.: Composite Materials, in: Brautman L.J., (Ed.) Vol. IV, Academic Press, New York, 1974.
  • [10] Clegg, W. J.: A stress analysis of the tensile deformation of metal matrix composites, Acta Metalurgica, 36, 2141-2149, 1988.
  • [11] Dwivedi, D. K.: Sliding temperature and Wear behaviour of cast Al-Si base alloy, Material Science and Technology, 19, 1081-1096, 2003.
  • [12] Anwar Khan, A. R., Ramesh, C. S., Ramachandra, A.: Heat Treatment of Al6061-SiC composites, Proceedings of the International Conference on Manufacturing, 21-28, 2002.
  • [13] Sahin, Y., Acelar, M.: Production and properties of SiCp reinforced aluminium alloy composites, Composites A, 34, 709-718, 2003.
  • [14] McDanels, D. L.: Analysis of stress-strain, fracture and ductility behaviour of aluminium matrix composites containing discontinuous silicon carbide reinforcement, Material Transactions, 16A, 1105-1112, 1985.
  • [15] Ahamed, A, Prashanth, T.: Corrosion Behaviour of Cenosphere Aluminium 6061 composites, International Journal of Advanced Materials Manufacturing and Characterization, 6, 2016.
  • [16] Ganesh, V. V., Lee, C. K., Guptha, M.: Enhancing the tensile modulus and strength of an aluminum alloy using interconnected reinforcement methodology, Material Science & Engineering A, 333 (1-2), 2002, 193-198.
  • [17] Chawla, N., Andres, Jones, C., Mattal, E. A.: Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiC p composite, Material Transactions A, 29, 2843, 1998.
  • [18] Monoharan, M. and Lewandowski, J.J.: Effect of Reinforcement Size and Matrix Microstructure on the Fracture Properties of an Aluminum Metal-Matrix Composite, Material Science and Engineering A, 150, 179-186, 1992.
  • [19] Lewandowski, J. J., Liu D. S., Liu, C.: Observations on the Effects of Particle Size and Superposed Pressure on Deformation of Metal Matrix Composites, Scripta Materilia, 25, 21-26, 1991.
  • [20] Kmat, S., Hirth, J. P. and Meharabian, R.: Mechanical properties of particulate-reinforced aluminum-matrix composites, Acta Metallurgica, 37, 2395-2404, 1989.
  • [21] Byun, J. C., Oh, J. Y., Seok, C. S., Lee, H. I.: Effect of various processing methods on the interfacial reactions in SiCp 2024 Al composites, Acta Metallurgica, 45, 5303-5310, 1997.
  • [22] Foo, K. S., Banks, W. M., Craven, A. J., Hendry, A.: Interface characterization of a SiC particulate/6061 aluminium alloy composite, Composites, 25, 679-683, 1994.
  • [23] Ho, K. F., Gupta, M., Srivatsan, T. S.: The mechanical behavior of Magnesium alloy AZ91 reinforced with fine copper particulates, Materials Science and Engineering A, 369, 302-308, 2004.
  • [24] Seo, Y. H., Kang, C. G.: Effects of hot extrusion through a curved die on the mechanical properties of SiCp/Al composites fabricated by melt-stirring, Composites Science and Technology, 59, 643-654, 1999.
  • [25] Cheng, T. and Cantor B.: Improvement of ductility of Ni-Al at room temperature and manufacturing of Ni-Al-TiB2 composites by melt spinning, Material Science and Engineering A, 153, 696-699, 1992.
  • [26] Ramesh, C.S., and Sheshadri, S.K.: Tribological characteristics of Nickel based composite coatings, Wear, 255, 893-902, 2003.
  • [27] Basavarajappa, S., Chandramohan, G., Mahadevan, A., Thangavelu, M., Subramanian, R., Gopalakrishnan, P.: Influence of sliding speed on the dry sliding wear behavior and the subsurface deformation on hybrid metal matrix composites, Wear, 262, 1007-1012, 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5421dfc-5314-47bd-9b3f-d40494a7a041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.