Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
FeCo fused catalyst was obtained by fusing iron and cobalt oxides with an addition of calcium, aluminium, and potassium oxides (CaO, Al2O3, K2O). An additional amount of potassium oxide was inserted by wet impregnation. Chemical composition of the prepared catalysts was determined with an aid of the XRF method. On the basis of XRD analysis it was found that cobalt was built into the structure of magnetite and solid solution of CoFe2O4 was formed. An increase in potassium content develops surface area of the reduced form of the catalyst, number of adsorption sites for hydrogen, and the ammonia decomposition rate. The nitriding process of the catalyst slows down the ammonia decomposition.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
111--116
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environmental Engineering, Poland, Pułaskiego 10, 70-322 Szczecin
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environmental Engineering, Poland, Pułaskiego 10, 70-322 Szczecin
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environmental Engineering, Poland, Pułaskiego 10, 70-322 Szczecin
Bibliografia
- 1. Schlapbach, L. & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature. 414, 353-358.
- 2. Chellappa, A.S., Fischer, C.M. & Thomson, W.J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A. 227, 231-240.
- 3. Yin, S.F., Zhang, Q.H., Xu, B.Q., Zhu, W.X., Ng, Ch.F. & Au, Ch.T. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224, 384-396. DOI: 10.1016/j.jcat.2004.03.008.
- 4. Yin, S.F., et al. (2004). A mini-review on ammonia decomposition catalysts for on site generation of hydrogen for fuel cell applications. Appl. Catal. A. 277, 1-9. DOI: 10.1016/j. apcata.2004.09.020.
- 5. Schuth, F., Palkovits, R., Schlogl, R. & Su, D.S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278-6289. DOI: 10.1039/c2ee02865d.
- 6. Lendzion-Bielun, Z., Pelka, R. & Arabczyk, W. (2009). Study of the Kinetics of Ammonia Synthesis and Decomposition on Iron and Cobalt Catalysts. Catal. Lett. 129, 119-121. DOI: 10.1007/s10562-008-9785-x.
- 7. Choi, J.G. (2004). Ammonia decomposition over Mo carbide catalysts. J. Ind. Eng. Chem. 10, 967-971.
- 8. Choi, J.G. (1999). Ammonia decomposition over vanadium carbide catalysts. J. Catal. 182, 104-116.
- 9. Ganley, J.C., Thomas, F.S., Seebauer, E.G. & Masel, R.I. (2004). A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal. Lett. 96, 117-122. DOI: 1011-372X/04/0700-0117/0.
- 10. Hansgen, D.A., Vlachos, D.G. & Chen, J.G. (2010). Using First principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chem. 2, 484-489. DOI: 10.1038/NCHEM.626.
- 11. Duan, X., Ji, J., Qian, G., Fan, Ch., Zhu, Y., Zhou, X., Chen, D., Yuan, W. (2012). Ammonia decomposition on Fe(11), Co(111) and Ni(111) surfaces: A density functional theory study. J. Mol. Catal. A: Chem. 357, 81-86. DOI: 10.1016/j. molcata.2012.01.023.
- 12. Pelka, R., Moszynska, I. & Arabczyk, W. (2009). Catalytic ammonia decomposition over Fe/Fe4N. Catal. Lett. 128, 72-76. DOI: 10.1007/s10562-008-9758-0.
- 13. Lendzion-Bieluń, Z. & Arabczyk, W. (2013). Fused FeCo catalysts for hydrogen production by means of the ammonia decomposition reaction. Catal. Today. 212, 215-219. DOI: 10.1016/j.cattod.2012.12.014.
- 14. Duan, X., Qian, G., Zhou, X., Chen, D. & Yuan, W. (2012). MCM-41 supported Co-Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chem. Eng. J. 207-208, 103-108. DOI: 10.1016/j.cej.2012.05.100.
- 15. Ji, J., Duan, X., Qian, G., Zhou, X., Tong, G. & Yuan, W. (2014). Towards an effiecient CoMo/γ−Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy. 39, 12490-12498. DOI: 10.1016/j. ijhydene.2014.06.081.
- 16. Liang, Ch., Li, W., Xin, Q. & Li, C. (2000). Catalytic decomposition of ammonia over nitrided NiMoNx/α−Al2O3 catalysts. Ind. Eng. Chem. Res. 39, 3694-3697. DOI: 10.1021/ ie990931n.
- 17. Zhang, J., Muller, J.-O., Zheng, W., Wang, D., Su, D. & Schlögl, R. (2008). Individual Fe-Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett. 8(9), 2738-2743. DOI: 10.1021/nl8011984.
- 18. Hill, A.K. & Torrente-Murciano, L. (2014). In-situ H2 production via low temperature decomposition of ammonia: Insights into the role of cesium as a promoter. Inter. J. Hydro. Ene. 39, 7646-7654. DOI: 10.1016/j.ijhydene.2014.03.043.
- 19. Raróg-Pilecka, W., Szmigiel, D., Kowalczyk, Z., Jodzis, S. & Zielinski, J. (2003). Ammonia decomposition over the carbon- based ruthenium catalyst promoted with barium or cesium. J. Catal. 218, 465-469. DOI: 10.1016/S0021-9517(03)00058-7.
- 20. Pelka, R. & Arabczyk, W. (2013). A new method for determining the nanocrystallite size distribution in systems where chemical reaction between solid and a gas phase occurs. J. Nanomat. DOI: 10.1155/2013/645050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5404eb4-9cc8-486f-861a-b8c71a37eba3