PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axisymmetric mixed convective MHD flow over a slender cylinder in the presence of chemically reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present analysis is focused on the study of the magnetic effect on coupled heat and mass transfer by mixed convection boundary layer flow over a slender cylinder in the presence of a chemical reaction. The buoyancy effect due to thermal diffusion and species diffusion is investigated. Employing suitable similarity transformations, the governing equations are transformed into a system of coupled non-linear ordinary differential equations and are solved numerically via the implicit, iterative, second order finite difference method. The numerical results obtained are compared with the available results in the literature for some special cases and the results are found to be in excellent agreement. The velocity, temperature, and the concentration profiles are presented graphically and analyzed for several sets of the pertinent parameters. The pooled effect of the thermal and mass Grashof number is to enhance the velocity and is quite the opposite for temperature and the concentration fields.
Rocznik
Strony
121--141
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics Vijayanagara Sri Krishnadevaraya University Ballari- 583104, INDIA
autor
  • Department of Mathematics Vijayanagara Sri Krishnadevaraya University Ballari- 583104, INDIA
autor
  • Department of Mathematics, Department of Mechanical Materials and Aerospace Engineering, University of Central Florida Orlando, FL 32816, USA
autor
  • TIFR Centre, IISC-TIFR Joint Programme in Applications of Mathematics Indian Institute of Science Bangalore, Karnataka, INDIA
autor
  • Department of Civil Engineering, SJB Institute of Technology Bangalore, Karnataka, INDIA
Bibliografia
  • [1] Chakrabarti A. and Gupta A.S. (1979): Hydromagnetic flow and heat transfer over a stretching sheet. – Quart. Appl. Math., vol.8, pp.73-78.
  • [2] Andersson H.I., Bech K.H. and Dandapat B.S. (1992): Magnetohydrodynamic flow of a power law fluid over a stretching sheet. – Int. J. Non-Linear Mech., vol.27, pp.929-936.
  • [3] Vajravelu K. and Nayfeh J. (1992): Hydromagnetic flow of a dusty fluid over a stretching sheet. – Int. J. Nonlinear Mech., vol.27, pp.937-945.
  • [4] Cortell R. (2006): Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. – Phys. Lett. A, vol.357, pp.298-305.
  • [5] Ishak A., Nazar R. and Pop I. (2008): Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. – Heat Mass Transf., vol.44, pp.921-927.
  • [6] Chien-Hsin Chen (2009): Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption. – Int. J. Non Linear Mech., vol.44, pp.596-603.
  • [7] Prasad K.V., Vajravelu K. and Datti P.S. (2010): The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet. – Int. J. Ther. Sci., vol.49, pp.603-610.
  • [8] Elbashbeshy E.M.A. and Aldawody D.A. (2011): Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface in the presence of internal heat generation/absorption. – Int. J. Phy. Sci., vol.6, pp.1540-1548.
  • [9] Sweet E., Vajravelu K., Van Gorder R.A. and Pop I. (2011): Analytical solution for the unsteady MHD flow of a viscous fluid between moving parallel plates. – Commun. Non-Linear Sci. Numer. Simul., vol.16, pp.266-273.
  • [10] Abbasbandy S., Naz R., Hayat T. and Alsaedi A. (2014): Numerical and analytical solutions for Falkner–Skan flow of MHD Maxwell fluid. – Applied Mathematics and Computation, vol.242, pp.569-575.
  • [11] Prasad K.V., Vaidya H. and Vajravelu K. (2015): MHD mixed convection heat transfer in a vertical channel with temperature-dependent transport properties. – Journal of Applied Fluid Mechanics, vol.8, No.4, pp.693-701.
  • [12] Chambre P.L. and Young J.D. (1958): On diffusion of a chemically reactive species in a laminar boundary layer flow. – Phys. Fluids, vol.1, pp.48-54.
  • [13] Das U.N., Deka R. and Soundalgekar V.M. (1994): Effect of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction. – Forsch. Ingenieurwes., vol.60, pp.284-287.
  • [14] Prasad K.V., Abel S. and Datti P.S. (2003): Diffusion of electrically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. – Internat. J. Non-Linear Mech., vol.38, pp.651.
  • [15] Akyildiz F.T., Bellout H. and Vajravelu K. (2006): Diffusion of chemically reactive species in a porous medium over a stretching sheet. – J. Math. Anal. Appl., vol.320, pp.322-339.
  • [16] Chamkha A.J., Aly A.M. and Mansour M.A. (2010): Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. – Chem. Eng. Commun., vol.197, pp.846–858.
  • [17] Vajravelu K., Prasad K.V., Sujatha A. and Chiu-On N.G. (2012): MHD flow and mass transfer of chemically reactive upper convected Maxwell (UCM) fluid past porous surface. – Appl. Math. Mech. -Engl. Ed., vol.33, No.7, pp.1-12.
  • [18] Mabood F., Khan W.A. and Md. Ismail A.I. (2015): MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. – Chemical Engineering Journal, vol.273, pp.430-437.
  • [19] Lin H.T. and Shih Y.P. (1980): Laminar boundary layer heat transfer along static and moving cylinders. – Journal of the Chinese Institute of Engineers, vol.3, pp.73-79.
  • [20] Lin H.T. and Shih Y.P. (1981): Buoyancy effects on the laminar boundary layer heat transfer along vertically moving cylinders. – Journal of the Chinese Institute of Engineers, vol.4, pp.47-51.
  • [21] Ganesan P. and Loganathan P. (2001): Unsteady natural convective flow past a moving vertical cylinder with heat and mass transfer. – Heat and Mass Transf. Phys., vol.79, pp.73-78.
  • [22] Bachok N. and Ishak A. (2009): Mixed convection boundary layer flow over a permeable vertical cylinder with prescribed surface heat flux. – Euro. J. Sci. Res., vol.34, pp.46-54.
  • [23] Bachok N. and Ishak A. (2010): Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. – Malaysian J. Math. Sci., vol.4, pp.159-169.
  • [24] Vajravelu K., Prasad K.V. and Santhi S.R. (2012): Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder. – Applied Mathematics and Computation, vol.219, pp.3993-4005.
  • [25] Hayat T., Anwar M.S., Farooq M. and Alsaedi A. (2015): Mixed Convection Flow of Viscoelastic Fluid by a Stretching Cylinder with Heat Transfer. – PLoS ONE 10(3): e0118815. doi: 10.1371/journal.
  • [26] Rekha R.R. and Naseem Ahmed (2012): Boundary layer flow past a stretching cylinder and heat transfer with variable thermal conductivity. – Appl. Math., vol.3, pp.205-209.
  • [27] Abramowitz M. and Stegun I.A. (1965): Handbook of Mathematical Functions. – New York: Dover.
  • [28] Cebeci T. and Bradshaw P. (1984): Physical and computational aspects of convective heat transfer. – NewYork: Springer-Verlag.
  • [29] Keller H.B. (1978): Numerical methods in boundary-layer theory. – Annual Review of Fluid Mechanics, vol.10, pp.417-433.
  • [30] Vajravelu K. and Prasad K.V. (2014): Keller-box method and its application (HEP and Walter De Gruyter GmbH, Berlin/Boston).
  • [31] Grubka L.J. and Bobba K.M. (1985): Heat transfer characteristics of a continuous stretching surface with variable temperature. – J. Heat Transf., vol.107, pp.248-250.
  • [32] Ali M.E. (1994): Heat transfer characteristics of a continuous stretching surface. – Heat Mass Transf., vol.29, pp.227-234.
  • [33] Ishak A., Nazar R. and Pop I. (2009): Boundary layer flow and heat transfer over an unsteady stretching vertical surface. – Meccanica, vol.44, pp.369-375.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f53d38fe-bc1e-4807-a8c2-764fdae942da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.