Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present an explicit algorithmic method for computing square roots in quaternion algebras over global fields of characteristic different from 2.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Mathematics University of Silesia in Katowice ul. Bankowa 14, 40-007 Katowice, Poland
Bibliografia
- [1] Heath T. A history of Greek mathematics. Vol. I. Dover Publications, Inc., New York, 1981. ISBN 0-486-24073-8. From Thales to Euclid, Corrected reprint of the 1921 original. [2] Niven I. The roots of a quaternion. Amer. Math. Monthly, 1942. 49:386-388. doi:10.2307/2303134. URL https://doi.org/10.2307/2303134.
- [3] Vignéras MF. Arithm´etique des algebra’s de quaternions, volume 800 of Lecture Notes in Mathematics. Springer, Berlin, 1980. ISBN 3-540-09983-2.
- [4] Voight J. Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer, Cham, [2021]©2021. ISBN 978-3-030-56692-0; 978-3-030-56694-4. doi:10.1007/978-3-030-56694-4. URL https: //doi.org/10.1007/978-3-030-56694-4.
- [5] Lam TY. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-1095-2.
- [6] Gordon B, Motzkin TS. On the zeros of polynomials over division rings. Trans. Amer. Math. Soc., 1965. 116:218-226. doi:10.2307/1994114. URL https://doi.org/10.2307/1994114.
- [7] Cohen H. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. ISBN 0-387-98727-4. doi:10.1007/978-1-4419-8489-0. URL https://doi.org/10.1007/978-1-4419-8489-0.
- [8] Fieker C, Jurk A, Pohst M. On solving relative norm equations in algebraic number fields. Math. Comp., 1997. 66(217):399-410. doi:10.1090/S0025-5718-97-00761-8. URL https://doi.org/10.1090/S0025-5718-97-00761-8.
- [9] Fincke U, Pohst M. A procedure for determining algebraic integers of given norm. In: Computer algebra (London, 1983), volume 162 of Lecture Notes in Comput. Sci., pp. 194-202. Springer, Berlin, 1983. doi: 10.1007/3-540-12868-9\ 103. URL https://doi.org/10.1007/3-540-12868-9_103.
- [10] Garbanati DA. An algorithm for finding an algebraic number whose norm is a given rational number. J. Reine Angew. Math., 1980. 316:1-13. doi:10.1515/crll.1980.316.1. URL https://doi.org/10.1515/crll.1980.316.1.
- [11] Simon D. Solving norm equations in relative number fields using S-units. Math. Comp., 2002. 71(239):1287-1305. doi:10.1090/S0025-5718-02-01309-1. URL https://doi.org/10.1090/S0025-5718-02-01309-1.
- [12] Czogała A. Witt rings of Hasse domains of global fields. J. Algebra, 2001. 244(2):604-630. doi: 10.1006/jabr.2001.8918. URL https://doi.org/10.1006/jabr.2001.8918.
- [13] Cannon J, Bosma W, Fieker C, (eds) AS. Handbook of Magma Functions, 2.26-4 edition, 2021.
- [14] Koprowski P. Computing singular elements modulo squares. Fund. Inform., 2021. 179(3):227-238. doi:10.3233/fi-2021-2022. URL https://doi.org/10.3233/fi-2021-2022.
- [15] Koprowski P, Rothkegel B. The anisotropic part of a quadratic form over a number field. J. Symbolic Comput., 2023. 115:39-52. doi:10.1016/j.jsc.2022.07.003. URL https://doi.org/10.1016/j.jsc.2022.07.003.
- [16] Koprowski P, Czogała A. Computing with quadratic forms over number fields. J. Symbolic Comput., 2018. 89:129-145. doi:10.1016/j.jsc.2017.11.009. URL https://doi.org/10.1016/j.jsc.2017.11.009.
- [17] Leep D, Wadsworth A. The Hasse norm theorem mod squares. J. Number Theory, 1992. 42(3):337-348. doi:10.1016/0022-314X(92)90098-A. URL https://doi.org/10.1016/0022-314X(92)90098-A.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f53b08e7-fc5b-4723-bdfa-247c04d0f847