Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present work describes a control methodology for a hybrid energy storage system (HESS) to improve its transient performance under dynamic load conditions. The proposed coordination control enhanced life cycle performance by segregating the power between battery energy storage systems (BESS) and a supercapacitor (SC). The BESS and SC are connected parallel to each other, and two individual DC–DC bidirectional converters connect them to a common DC bus. The coordination control is established between the controllers of BESS and the SC of HESS, which helps to utilise the usable energy capacity of the HESS. The charging/discharging current of the BESS is controlled within the allowable safety range based on the slope and magnitude of the BESS current. The high-frequency power component is handled by the SC, which helps to reduce the extra exhaustion on the BESS during operation with a higher current. The proposed coordination control of HESS is validated through simulation and the results show the effectiveness of the proposed controller.
Wydawca
Czasopismo
Rocznik
Tom
Strony
227--245
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
Bibliografia
- Abeywardana, D. B. W., Hredzak, B. and Agelidis, V. G. (2017). A Fixed Frequency Sliding Mode Controller for a Boost-Inverter-Based Battery Supercapacitor Hybrid Energy Storage System. IEEE Transactions on Power Electronics, 32(1), pp. 668–680. doi: 10.1109/TPEL.2016.2527051.
- Akagi, H., Kanazawa, Y. and Nabae, A. (1984). Instantaneous Reactive Power Compensatiors Comprising Switching Devices without Energy Storage Components. IEEE Transactions on Industry, IA-20(3), pp. 625–630. doi: 10.1109/TIA.1984.4504460.
- Amin., Bambang, R. T., Rohman, A. S., Dronkers, C. J. and Ortega, R., Sasongko, A. (2014). Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control. IEEE Transactions on Industrial Informatics, 10(4), pp. 1192–2002. doi: 10.1109/TII.2014.2333873.
- Ara ́ujo, R. E., de Castro, R., Pinto, C., Melo, P. and Freitas, D. (2014). Combined Sizing and Energy Management in EVs with Batteries and Supercapacitors. IEEE Transactions on Vehicular Technology, 63(7), pp. 3062–3076. doi: 10.1109/TVT.2014.2318275.
- Aredes, M. and Watanabe, E. H. (1995). New Control Algorithms for Series and Shunt Three-Phase Four-wire Active Power Filters. IEEE Transactions on Power Delivery, 10(3), pp. 1649–1656. doi: 10.1109/61.400952.
- Dusmez, S. and Khaligh, A. (2014). A Supervisory Power-Splitting Approach for a New Ultracapacitor, Battery Vehicle Deploying Two Propulsion Machines. EEE Transactions on Industrial Informatics, 10(3), pp. 1960–1971. doi: 10.1109/TII.2014.2299237.
- Henz, C. L. and Gasparin, F. P. (2021). Investigation on Control Strategies for a Single-Phase Photovoltaic Inverter Using PSCAD/EMTDC Software. Power Electronics and Drives, 6(1), pp.75–99. doi: 10.2478/pead-2021-0006.
- Hredzak, B., Agelidis, V. G. and Demetriades, G. D. (2014). A Low Complexity Control System for a Hybrid dc Power Source Based on Ultracapacitor–Lead–Acid Battery Configuration. IEEE Transactions on Power Electronics, 29(6), pp. 2882–2891. doi: 10.1109/TPEL.2013.2277518.
- Huang, S. C., Tseng, K. H., Liang, J. W., Chang, C. L. and Pecht, M. G. (2017). An Online SOC and SOH Estimation Model for Lithium-Ion Batteries. Energies, 10(4), p. 512. doi: https://doi.org/10.3390/en10040512.
- Jossen, A. (2006). Fundamentals of Battery Dynamics. Journal of Power Sources, 154(2), pp. 530–538. doi: 10.1016/j.jpowsour.2005.10.041.
- Kollimalla, S. K., Ukil, A., Gooi, H. B., Manandhar, U. and Tummuru, N. R. (2017). Optimization of Charge/Discharge Rates of a Battery Using a Two-Stage Rate Limit Control. IEEE Transactions on Sustainable Energy, 8(2), pp. 516–529. doi: 10.1109/TSTE.2016.2608968.
- Lahyani, A., Venet, P., Guermazi, A. and Troudi, A. (2013). Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Transactions on Power Electronics, 28(4), pp. 1509–1522. doi: 10.1109/TPEL.2012.2210736.
- Łukasz, K. and Zieliński, D. (2021). Control of a Four-Wire Hybrid Prosumer Converter for Balancing Utility Grids. Power Electronics and Drives, 6(1), pp.1–11. doi: 10.2478/pead-2021-0001.
- Ma, T., Yang, H. and Lu, L. (2015). Development of Hybrid Battery-Supercapacitor Energy Storage for Remote Area Renewable Energy Systems. Applied Energy, 153, pp. 56–62. doi: 10.1016/j.apenergy.2014.12.008.
- Manandhar, U., Tummuru, N. R., Kollimalla, S. K., Ukil, A., Beng, G. H. and Chaudhari, K. (2018). Validation of Faster Joint Control Strategy for Battery- and Supercapacitor-Based Energy Storage System. IEEE Transactions on Industrial Electronics, 65(4), pp. 3286–3294. doi: 10.1109/TIE.2017.2750622.
- Mukherjee, N. and Strickland, D. (2016). Control of Cascaded dc-dc Converter Based Hybrid Battery Energy Storage Systems – Part I: Stability Issue. IEEE Transactions on Industrial Electronics, 63(4), pp. 2340–2349. doi: 10.1109/TIE.2015.2509911.
- Tremblay, O., Dessaint, L. A. and Dekkiche, A. I. (2007). A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. In: Proceedings IEEE Vehicle Power and Propulsion Conference, 284–289. doi: 10.1109/VPPC.2007.4544139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5264ce3-4474-4e84-9cea-01cc70a89054