PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Data Consistent Variational Segmentation Approach Suitable for Real-time Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computed Tomography (CT) is an imaging technique that allows to reconstruct volumetric information of the analyzed objects from their projections. The most popular reconstruction technique is the Filtered Back Projection (FBP). It has the advantage of being the fastest technique available, but also the disadvantage to require a high number of projections to retrieve good quality reconstructions. In this article we propose a segmentation method for tomographic volumes composed of few materials. Our method combines existing high-quality variational segmentation frameworks with the data consistency approach used in tomography and discrete tomography. We show that our algorithm performs well under high noise level and with moderately low number of projections, and that the data consistency significantly improves the segmentation, at the cost of only one FBP reconstruction and forward projection.
Wydawca
Rocznik
Strony
1--20
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Centrum Wiskunde en Informatica, Computational Imaging group, Science Park 123, 1098 XG Amsterdam, The Netherlands
autor
  • Centrum Wiskunde en Informatica, Computational Imaging group, Science Park 123, 1098 XG Amsterdam, The Netherlands
  • Centrum Wiskunde en Informatica, Computational Imaging group, Science Park 123, 1098 XG Amsterdam, The Netherlands
Bibliografia
  • [1] Aghasi A, Kilmer M, Miller EL. Parametric level set methods for inverse problems, SIAM Journal on Imaging Sciences, 2011;4(2):618-650. doi:10.1137/100800208.
  • [2] Andersen V, Bjorholm A, Hansen C. Computing segmentations directly from X-ray projection data via parametric deformable curves, Measurement Science and Technology, 2018;29(1):16. doi:10.1088/1361-6501/aa950e.
  • [3] Batenburg KJ, Sijbers J. Adaptive thresholding of tomograms by Projection Distance Minimization, Pattern Recognition, 2009;42(10):2297-2305. doi:10.1016/j.patcog.2008.11.027.
  • [4] Batenburg KJ, Sijbers J. Optimal threshold selection for tomogram segmentation by Projection Distance Minimization, IEEE Transactions on Medical Imaging, 2009;28(5):676-686. doi:10.1109/TMI.2008.2010437.
  • [5] Batenburg KJ, Sijbers J. DART: A practical reconstruction algorithm for discrete tomography, IEEE Transactions on Image Processing, 2011;20(9):2542-2553. doi:10.1109/TIP.2011.2131661.
  • [6] Boykov Y, Jolly MP. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Proceedings IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7-14 July 2001. doi:10.1109/ICCV.2001.937505.
  • [7] Brox T, Weickert J. Level set segmentation with multiple regions, Proceedings IEEE Transactions on Image Processing, October 2006;15(10):3213-3218. doi:10.1109/TIP.2006.877481.
  • [8] Caselles V, Kimmel R, Sapiro G. Geodesic active contours, International Journal of Computer Vision, 1997;22(1):61-79. doi:10.1023/A:1007979827043.
  • [9] Chambolle A, Cremers D, Pock T. A convex approach to minimal partitions, SIAM Journal on Imaging Sciences, 2011;5(4):1113-1158. doi:10.1137/110856733. URL https://hal.archives-ouvertes.fr/hal-00630947.
  • [10] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 2011;40(1):120-145. doi:10.1007/s10851-010-0251-1.
  • [11] Chan T, Zhu W. Level set based shape prior segmentation, IEEE Conference on Computer Vision and Pattern Recognition, Beijing, China 17-21 October 2005 pp.1164-1170. doi:10.1109/CVPR.2005.212.
  • [12] Chan TF, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models, SIAM Journal on Applied Mathematics, 2006;66(5):1632-1648. doi:10.1137/040615286.
  • [13] Chan TF, Vese LA. Active contours without edges, IEEE Transactions on Image Processing, 2001;10(2): 266-277. doi:10.1109/83.902291.
  • [14] Couprie C, Grady L, Najman L, Talbot H. Power Watershed: A unifying graph-based optimization framework, IEEE Transactions on Pattern analysis and Machine Intelligence, 2011;33(7):1384-1399. doi:10.1109/TPAMI.2010.200.
  • [15] Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm, Journal of the Optical Society of America A, 1984;1(6):612-619. URL https://doi.org/10.1364/JOSAA.1.000612.
  • [16] Grady L. Random walks for image segmentation, IEEE Transactions on Pattern analysis and Machine Intelligence, 2006;28(11):1768-1783. doi:10.1109/TPAMI.2006.233.
  • [17] Gregor J, Benson T. Computational analysis and improvement of SIRT, IEEE Transactions on Medical Imaging, 2008;27(7):918-924. doi:10.1109/TMI.2008.923696.
  • [18] Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review, 1992; 34(4):561-580. doi:10.1137/1034115.
  • [19] Kak AC, Slaney M. Principles of computerized tomographic imaging, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 2001. ISBN:978-0-89871-494-4. URL https://doi.org/10.1137/1.9780898719277.
  • [20] Kappes JH, Petra S, Schnör C, Zisler M. Tomo GC: Binary tomography by constrained GraphCuts, Pattern Recognition (J. Gall, P. Gehler, B. Leibe, Eds.), vol. 9358, Lecture Notes in Computer Science, 2015 pp.262-273. doi:10.1007/978-3-319-24947-6_21
  • [21] Morozov VA. Methods for Solving Incorrectly Posed Problems, Springer Verlag, 1984. ISBN:978-0-387-96059-3. doi:10.1007/978-1-4612-5280-1.
  • [22] Mumford DB, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 1989;42(5):577-685. URL https://doi.org/10.1002/cpa.3160420503.
  • [23] Osher S, Fedkiw RP. Level set methods: An overview and some recent results, Journal of Computational Physics, 2001;169(2):463-502. URL https://doi.org/10.1006/jcph.2000.6636.
  • [24] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 1988;79(1):12-49. URL https://doi.org/10.1016/0021-9991(88)90002-2.
  • [25] Otsu N. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 1979;9(1):62-66. doi:10.1109/TSMC.1979.4310076.
  • [26] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990;12(7):629-639. doi:10.1109/34.56205.
  • [27] Ramlau R, Ring W. A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data, Journal of Computational Physics, 2007;221(2):539-557. doi:10.1016/j.jcp.2006.06.041.
  • [28] Roelandts T, Batenburg KJ, den Dekker AJ, Sijbers J. The reconstructed residual error: A novel segmentation evaluation measure for reconstructed images in tomography, Computer Vision and Image Understanding, 2014;126:28-37. doi:10.1016/j.cviu.2014.05.007.
  • [29] Rousson M, Paragios N. Shape priors for level set representations, European Conference on Computer Vision (A. Heyden, G. Sparr, M. Nielsen, P. Johansen, Eds.), vol. 2351, Lecture Notes in Computer Science, 2002 pp. 78-92. doi:10.1007/3-540-47967-8_6.
  • [30] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 1992;60(1-4):259-268. URL https://doi.org/10.1016/0167-2789(92)90242-F.
  • [31] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, 2004;13(1). URL https://doi.org/10.1117/1.1631315.
  • [32] Tuysuzoglu A, Karl WC, Stojanovic I, Castañón D, Ünlü, MS. Graph-Cut based discrete-valued image reconstruction, IEEE Transactions on Image Processing, 2015;24(5):1614-1627. doi:10.1109/TIP.2015.2409568.
  • [33] Tuysuzoglu A, Khoo Y, Karl WC. Variable splitting techniques for discrete tomography, Processing IEEE International Conference on Image Processing, 25-28 September 2016 pp. 2329-2340. doi:10.1109/ICIP.2016.7532661.
  • [34] Van Aarle W, Batenburg KJ, Sijbers J. Optimal threshold selection for segmentation of dense homogeneous objects in tomographic reconstructions, IEEE Transactions on Medical Imaging, 2001;30(4):980-989. doi:10.1109/TMI.2010.2104328.
  • [35] Van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, Beenhouwer JD, Batenburg KJ, Sijbers J. Fast and flexible X-ray tomography using the ASTRA toolbox, Optics Express, 2016;1(6):25129-25147. doi:10.1364/OE.24.025129.
  • [36] Vese LA, Chan TF. A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 2002;50(3):271-293. doi:10.1023/A:1020874308076.
  • [37] Wang L, Sixou B, Peyrin F. Binary tomography reconstructions with stochastic level-set methods, Medical Physics, 2010;37(5):2329-2340.
  • [38] Wang L, Sixou B, Peyrin F. Multi-level tomography reconstructions with level-set and TV regularization methods, European Signal Processing Conference, August 2016, Hungary. 2016 pp.1698-1702. doi:10.1109/EUSIPCO.2016.7760538.
  • [39] Weiss P, Blanc-Féraud L, Aubert G. Efficient schemes for Total Variation minimization under constraints in image processing, SIAM Journal on Scientific Computing, 2009;31(3):2047-2080. URL https://doi.org/10.1137/070696143.
  • [40] Whitaker RT, Elangovan V. A direct approach to estimating surfaces in tomographic data, Medical Image Analysis, 2002;6(3):235-249. URL https://doi.org/10.1016/S1361-8415(02)00082-8.
  • [41] Xu J, Jia Y, Shi Z, Pang K. An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation, Signal Processing, 2016;119(C):80-91. URL https://doi.org/10.1016/j.sigpro.2015.07.017.
  • [42] Yoona S, Pineda AR, Fahrig R. Simultaneous segmentation and reconstruction: A level set method approach for limited view computed tomography, Medical Physics, 2010;37(5):2329-2340. doi:10.1118/1.3397463.
  • [43] Zhu SC, Yuille A. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996;18(9):884-900. doi:10.1109/34.537343.
  • [44] Zhuge X, Palenstijn WJ, Batenburg KJ. TVR-DART: A more robust algorithm for discrete tomography from limited projection data with automated gray value estimation, IEEE Transactions on Image Processing, 2016;25(1):455-468. doi:10.1109/TIP.2015.2504869.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f523400b-e879-416f-85ec-af7382f84246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.