PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of non-isothermal primary crystallization kinetics of Fe95Si5 amorphous alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the primary crystallization of metallic Fe95Si5 glass which was studied by differential scanning calorimetry (DSC) with non-isothermal methods. The activation energy of crystal transformation was calculated with the equations proposed by Kissinger, Mahadevan and a modified version of the equation developed by Augis and Bennett. Activation energy was determined at Ea = 242.0 - 254.2 kJ / mol, subject to the applied method. The Avrami exponent of crystallization in the amorphous phase n was determined in the range of n = 2.40 - 2.52, depending on the method of calculating the transformation of activation energy.
Rocznik
Tom
Strony
237--247
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn Poland
  • Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn Poland
  • Department of Material and Machine Technology University of Warmia and Mazury in Olsztyn Poland
Bibliografia
  • Al-Heniti S.H. 2009. Kinetic study of non-isothermal crystallization in Fe78Si9B13 metallic glass. Journal of Alloys and Compounds, 484: 177–184.
  • Ansariniya M., Seifoddini A., Hasani S. 2018. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass matrix composite produced by partial crystallization: The non-isothermal kinetic analysis. Journal of Alloys and Compounds, 763: 606–612.
  • Augis J.A., Benntt J.E. 1978. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method. Journal of Thermal Analysis, 13: 283–292.
  • Frączyk A. 2011. The activation energy of primary crystallization of Fe95Si5 metallic glass. Technical Science, 14(1): 93-100.
  • Gao Y.Q., Wang W. 1986. On the activation energy of crystallization in metallic glasses. Journal of Non-Crystalline Solids, 81: 129–134.
  • Gibson M.A., Delamore G.W. 1987. Crystallization kinetics of some iron-based metallic glasses. Journal of Material Science, 22(12): 4550–4557.
  • Jakubczyk E., Krajczyk A., Jakubczyk M. 2008. Crystallization of amorphous Fe78Si9 B13 alloy. Journal of Physics: Conference Series, 79: 012008.
  • Jung H. Y., Stoica M., Yi S., Kim D.H., Eckert J. 2015. Crystallization Kinetics of Fe76.5-xC6.0Si3.3B5.5P8.7Cux (x = 0, 0.5, and 1 at. pct) Bulk Amorphous Alloy. Metallurgical and Materials Transactions, 46(A): 2415-2421.
  • Jaafari Z., Seifoddini A., Hasani S., Rezaei-Shahreza P. 2018. Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77 Mo5P9C7.5B1.5]100-xCux (x = 0.1 at.%) BMG. Journal of Thermal Analysis and Calorimetry, 134: 1565–1574.
  • Kiss inger H. E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702–1706.
  • Kong L.H., Gao Y.L., Song T.T., Wang G., Zhai Q. J. 2011. Non-isothermal crystallization kinetics of FeZrB amorphous alloy. Thermochimica Acta, 522: 166–172.
  • Li H.X., Jung H.Y., Yi S. 2008. Glass forming ability and magnetic properties of bulk metallic glasses Fe68.7-C7.0Si3.3B5.5P8.7Cr2.3Mo2.5Al2.0Cox (x = 0–10). Journal of Magnetism and Magnetic Materials, 320: 241–245.
  • Mahadevan S., Giridhar A., Singh A.K. 1986. Calorimetric measurements on as-sb-se glasses. Journal of Non-Crystalline Solids, 88(1): 11–34.
  • Málek J. 2000. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 355: 239–253.
  • Matusita K, Sakka S. 1979. Kinetic Study of the Crystallisation of Glass by Differential Scanning Calorimetry. Physics and Chemistry of Glasses, 20: 81–84.
  • Matusita K, Sakka S. 1980. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 38–39(2): 741–746.
  • Nobuyuki N., Kenji A., Akihisa I. 2007. Novel applications of bulk metallic glass for industrial products. Journal of Non-Crystalline Solids, 353: 3615-3621.
  • Ozawa T. 1970. Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal Analysis, 2: 301–324.
  • Rezaei-Shahreza P., Seifoddini A., Hasani S. 2017. Thermal stability and crystallization proces in a Fe-based bulk amorphous alloy: The kinetic analysis. Journal of Non-Crystalline Solids, 471: 286–294.
  • Rezaei-Shahreza P., Seifoddini A., Hasani S. 2017. Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy. Thermochimica Acta, 652: 119–125.
  • Sahingoza R., Erola M., Gibbs M.R.J. 2004. Observation of changing of magnetic properties and microstructure of metallic glass Fe78Si9B13 with annealing. Journal of Magnetism and Magnetic Materials, 271: 74–78.
  • Santos D.S., Santos D.R., Biasi R.S. 2002. Study of crystallization in the Fe86Cu1Zr7B6 amorphous alloy using FMR and DSC. Journal of Magnetism and Magnetic Materials, 242–245(2): 882–884.
  • Wang T., Yang X., Li Q. 2014. Effect of Cu and Nb additions on crystallization kinetics of Fe80P13C7 bulk metallic glasses. Thermochimica Acta, 579: 9–14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f51d4c82-166f-45cc-a06b-df24fca13a6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.