Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.
Czasopismo
Rocznik
Tom
Strony
65--85
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- College of Science, Nanjing University of Science and Technology, Nanjing 210094, China
- Engineering Training Centre, Nanjing University of Science and Technology, Nanjing 210094, China
autor
- College of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
- [1] SANCHEZ-GIL J.A., NIETO-VESPERINAS M., MORENO F., GONZALEZ F., Speckle statistics of electromagnetic waves scattered from perfectly conducting random rough surfaces, Journal of the Optical Society of America A 10(12), 1993: 2628–2636, DOI: 10.1364/JOSAA.10.002628.
- [2] SÁNCHEZ-GIL J.A., NIETO-VESPERINAS M., Resonance effects in multiple light scattering from statistically rough metallic surfaces, Physical Review B 45(15), 1992: 8623, DOI: 10.1103/PhysRevB.45.8623.
- [3] MÉNDEZ E.R., NAVARRETE A.G., LUNA R.E., Statistics of the polarization properties of one-dimensional randomly rough surfaces, Journal of the Optical Society of America A 12(11), 1995: 2507–2516, DOI: 10.1364/JOSAA.12.002507.
- [4] IZOTOVA V.F., MAKSIMOVA I.L., ROMANOV S.V., Simulation of polarization characteristics of the crystalline lens during protein aggregation with regard to multiple scattering, Optics and Spectroscopy 86, 1999: 902–908.
- [5] MAKSIMOVA I.L., ROMANOV S.V., IZOTOVA V.F., The effect of multiple scattering in disperse media on polarization characteristics of scattered light, Optics and Spectroscopy 92(6), 2002: 915–923, DOI: 10.1134/1.1490031.
- [6] IZOTOVA V.F., MAKSIMOVA I.L., ROMANOV S.V., Influence of shape and dimension of the cuvette on polarization characteristics of multiple scattered light, Proc. SPIE 3726, Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, 1999: 370–380, DOI: 10.1117/12.341419.
- [7] WANG S., XU L., LI H., XIE S., Monte Carlo simulation of the diffusely scattered polarized light in turbid media, Proc. SPIE 5630, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II, 2005: 823–832, DOI: 10.1117/12.576972.
- [8] JIN L., TAKIZAWA K., Stokes parameters of reflected and scattered light by a rough surface, Proc. SPIE 7432, Optical Inspection and Metrology for Non-Optics Industries, 2009: 74320B, DOI: 10.1117/12.828030.
- [9] JIN L., YAMAGUCHI K., WATANABE M., HIRA S., KONDOH E., GELLOZ B., Polarization characteristics of scattered light from macroscopically rough surfaces, Optical Review 22, 2015: 511–520, DOI: 10.1007/s10043-015-0117-2.
- [10] DELACRÉTAZ Y., SEYDOUX O., CHAMOT S., ETTEMEYER A., DEPEURSINGE C., Monte Carlo simulation of the field back-scattered from rough surfaces, Journal of the Optical Society of America A 29(3), 2012: 270–277, DOI: 10.1364/JOSAA.29.000270.
- [11] LETNES P.A., MARADUDIN A.A., NORDAM T., SIMONSEN I., Calculation of all elements of the Mueller matrix for scattering of light from a two-dimensional randomly rough metal surface, arXiv:1108.2599 [physics.optics].
- [12] LETNES P.A., MARADUDIN A.A., NORDAM T., SIMONSEN I., Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces, Physical Review A 86(3), 2012: 031803(R), DOI: 10.1103/PhysRevA.86.031803.
- [13] GUIRADO D., STAM D., Monte Carlo and T-matrix modeling of the reflection of polarized light by rough, planetary surfaces, European Planetary Science Congress 2012, IFEMA-Feria de Madrid, September 23–28, 2012, Madrid, Spain.
- [14] GUIRADO D., STAM D.M., SMIT M., A Monte Carlo model for the reflection of polarized light on surfaces, 1st WG meeting, Warsaw, May 7–10, 2012.
- [15] WANG C., GAO J., YAO T., WANG L., SUN Y., XIE Z., GUO Z., Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation, Optics Express 24(9), 2016: 9397–9411, DOI: 10.1364/OE.24.009397.
- [16] GUAN F., ZHANG X., HAN H., ZHONG W., Influence of size of the spherical scatterers and the attenuation coefficient on the polarization memory based on the Electric Monte Carlo simulation, Proc. SPIE 10244, International Conference on Optoelectronics and Microelectronics Technology and Application, 2017: 1024419, DOI: 10.1117/12.2266755.
- [17] YUN T., ZENG N., LI W., LI D., JIANG X., MA H., Monte Carlo simulation of polarized photon scattering in anisotropic media, Optics Express 17(19), 2009: 16590–16602, DOI: 10.1364/OE.17.016590.
- [18] YUN T., LI W., JIANG X., MA H., Monte Carlo simulation of polarized light scattering in tissues, Journal of Innovative Optical Health Sciences 2(2), 2009: 131–135, DOI: 10.1142/S1793545809000504.
- [19] JIANG S., LAI J., WANG C., BIAN B., LU J., LI Z., Describing the depolarization characteristic of rough surface by M11/M00 of Mueller matrix, Proc. SPIE 7508, 2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications, 2009: 75080R, DOI: 10.1117/12.836870.
- [20] JIANG S., WANG C., LAI J., BIAN B., LU J., LI Z., Monte Carlo simulation of Stokes vectors of polarized light scattering from two-dimensional random rough surfaces, Journal of Modern Optics 58(18), 2011: 1651–1658, DOI: 10.1080/09500340.2011.618278.
- [21] YAN K., WANG S., JIANG S., XUE L., SONG Y., YAN Z., LI Z., Calculation and analysis of Mueller matrix in light scattering detection, Chinese Optics Letters 12(9), 2014: 092901.
- [22] YAN K., WANG S., JIANG S., SONG Y., XUE L., YAN Z., LI Z., Full angular Stokes vectors of light scattering from two-dimensional randomly rough surfaces by Kirchhoff approximation method, Journal of Optics 16(10), 2014: 105714, DOI: 10.1088/2040-8978/16/10/105714.
- [23] WANG S., XUE L., YAN K., Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method, Journal of Quantitative Spectroscopy and Radiative Transfer 196, 2017: 183–200, DOI: 10.1016/j.jqsrt.2017.04.016.
- [24] YAN K., YANG S., ZHAO Y., MA C., JIN Y., WANG S., Deep learning for light scattering computation: Reconstructing light scattering fields from 1-D randomly rough surfaces as an example, Computer Physics Communications 270, 2022: 108183, DOI: 10.1016/j.cpc.2021.108183.
- [25] WANG X., HU T., LI D., GUO K., GAO J., GUO Z., Performances of polarization-retrieve imaging in stratified dispersion media, Remote Sensing 12(18), 2020: 2895, DOI: 10.3390/rs12182895.
- [26] LI D., XU C., ZHANG M., WANG X., GUO K., SUN Y., GAO J., GUO Z., Measuring glucose concentration in a solution based on the indices of polarimetric purity, Biomedical Optics Express 12(4), 2021: 2447–2459, DOI: 10.1364/BOE.414850.
- [27] LI D., GUO K., SUN Y., BI X., GAO J., GUO Z., Depolarization characteristics of different reflective interfaces indicated by indices of polarimetric purity (IPPs), Sensors 21(4), 2021: 1221, DOI: 10.3390/s21041221.
- [28] LI D., XU C., YAN L., GUO Z., High-performance scanning-mode polarization based computational ghost imaging (SPCGI), Optics Express 30(11), 2022: 17909–17921, DOI: 10.1364/OE.458487.
- [29] LI D., LIN B., WANG X., GUO Z., High-performance polarization remote sensing with the modified U-Net based deep-learning network, IEEE Transactions on Geoscience and Remote Sensing 60, 2022: 5621110, DOI: 10.1109/TGRS.2022.3164917.
- [30] TOPORKOV J.V., Study of Electromagnetic Scattering from Randomly Rough Ocean-Like Surfaces Using Integral-Equation-Based Numerical Technique, PhD Thesis, Virginia Polytechnic Institute and State University, 1998.
- [31] TSANG L., KONG J.A., DING K.H., AO C.O., Scattering of Electromagnetic Waves: Numerical Simulations, Wiley, 2001.
- [32] WU J.J., Simulation of rough surfaces with FFT, Tribology International 33(1), 2000: 47–58, DOI: 10.1016/S0301-679X(00)00016-5.
- [33] JIANG Y., LI Z., Monte Carlo simulation of Mueller matrix of randomly rough surfaces, Optics Communications 474, 2020: 126113, DOI: 10.1016/j.optcom.2020.126113.
- [34] SANCHEZ-GIL J.A., NIETO-VESPERINAS M., Light scattering from random rough dielectric surfaces, Journal of the Optical Society of America A 8(8), 1991: 1270–1286, DOI: 10.1364/JOSAA.8.001270.
- [35] KNOTTS M.E., O’DONNELL K.A., Measurements of light scattering by a series of conducting surfaces with one-dimensional roughness, Journal of the Optical Society of America A 11(2), 1994: 697–710, DOI: 10.1364/JOSAA.11.000697.
- [36] CHAIKINA E.I., NEGRETE-REGAGNON P., RUIZ-CORTÉS V., MÉNDEZ E.R., Measurements of the hemispherical scattering distribution function of rough dielectric surfaces, Optics Communications 208(4–6), 2002: 215–221, DOI: 10.1016/S0030-4018(02)01581-X.
- [37] CARON J., LAFAIT J., ANDRAUD C., Catastrophe theory interpretation of multiple peaks produced by light scattering from very rough dielectric surfaces, Physica B: Condensed Matter 325, 2003: 76–85, DOI: 10.1016/S0921-4526(02)01452-7.
- [38] JIANG Y., LI Z., Mueller matrix of laser scattering by a two-dimensional randomly rough surface, Journal of Quantitative Spectroscopy and Radiative Transfer 287, 2022: 108225, DOI: 10.1016/j.jqsrt.2022.108225.
- [39] SCHAEFER B., COLLETT E., SMYTH R., BARRETT D., FRAHER B., Measuring the Stokes polarization parameters, American Journal of Physics 75(2), 2007: 163–168, DOI: 10.1119/1.2386162.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f515f47f-3e67-4765-ac6c-13bab9823171