PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Studies and Analysis of the Impact of Part Orientation in Selective Laser Sintering Process on Mechanical and Structural Properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to assess the results of experimental tests on the impact of orientation and location of the parts in the building room for the selective sintering of powders (SLS - Selective Laser Sintering), on the fundamental strength and structural parameters of specimens prepared according to DIN EN ISO 527, DIN EN ISO 178, DIN EN ISO 179, DIN 53505 and DIN 53736. The experimental results were further verified by SEM analysis and numerical simulations for specimens of sintered powder PA2200 polyamide. The research allowed to determine the correlation between the orientation and location of parts in the building room and the properties of the elements of polyamide powders as well as assess their impact on the quality of the sintered product.
Rocznik
Strony
27--43
Opis fizyczny
Bibliogr. 23 poz., il., tab., wykr.
Twórcy
  • Warsaw University of Technology
autor
  • Warsaw University of Technology
autor
  • Warsaw University of Technology
Bibliografia
  • 1. Ajoku, U., Saleh, N., Hopkinson, N., Hague, R.J.M. and Erasenthiran P., 2006, Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts, Proceedings of the Institution of Mechanical Engineers Part B – Journal of Engineering Manufacture, vol. 220, no. 7, p. 1077-1086.
  • 2. Anitha R., Arunachalam S., Radhakrishnan P., 2001, Critical parameters influencing the quality of prototypes in fused deposition modeling, Journal of Materials Processing Technology, vol. 118, 2001, p. 385-388.
  • 3. Caulfield, B., McHugh, P.E. and Lohfeld, S., 2007, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology,vol.182, No 1, 2007, p. 477-488.
  • 4. Cheng W., Fuh J.Y.H., Nee A.Y.C., Wong Y.S., Loh H.T., Miyazawa T., 1995, Multiobjective optimization of part-building orientation in stereolithography, Rapid Prototyping Journal, vol. 1, nr 4, 1995, p. 12-23.
  • 5. Choren, J., Gervasi, V., Herman, T., Kamara, S. andMitchell, J., 2001, SLS powder life study, paper presented at Twelfth Annual International Solid FreeformFabrication Symposium, University of Texas at Austin, 2001, Austin, TX.
  • 6. Dąbrowska-Tkaczyk A., Floriańczyk A., Grygoruk R., Skalski K., Borkowski P., 2011, Virtual and material models of human thoracic-lumbar spine with compressive fracture based on patients' CT data and the Rapid Prototyping Technique, The Archive of Mechanical Engineering, vol. LVIII, 2011, nr 4, p. 429-439.
  • 7. Dingal S., Pradhan T. R., Sarin Sundar J. K., Roy Choudhury A., Roy S. K., 2008, The application of Taguchi’s method in the experimental investigation of the laser sintering process, Int J Adv Manuf Technol (2008) 38:904–914.
  • 8. Gibson I., Stucker B., Rosen D., 2009, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2009.
  • 9. Jhabvala J., Boillat E., Glardon R., 2013, Study of the inter-particle necks in selective laser sintering, Rapid Prototyping Journal, vol. 19, nr 2, 2013, p. 111-117.
  • 10. Mager A., Moryson G., Cellary A., Marciniak M., 2011, Zastosowanie technik rapid prototyping do wytwarzania wyrobów metalowych, Postępy Nauki i Techniki, 2011, 8, p. 174-182.
  • 11. Majewski, C., Zarringhalam, H. and Hopkinson, N., 2008, Effect of the degree of particle melt on mechanical properties in selective laser-sintered nylon-12 parts, Proceedings of the Institution of Mechanical Engineers Part B – Journal of Engineering Manufacture, vol. 222, no. 9, 2008, p. 1055-1064.
  • 12. Meagan R. Vaughan M.R., Crawford R.H., 2011, Effectiveness of virtual models in design for additive manufacturing: a laser sintering case study, Rapid Prototyping Journal, vol. 19, nr 1, 2013, str. 11-19 Nikzad M., Masood S.H., Sbarski I., Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling, Materials and Design, vol. 32, 2011, p. 3448.
  • 13. Parthasarathy J., Starly B., Raman S., 2011, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications, Journal of Manufacturing Processes, vol. 13, 2011, p. 160–170.
  • 14. Ramos-Grez, J., Amado-Becker, A., Yan˜ ez, M.J., Vargas, Y. and Gaete, L., 2008, Elastic tensor stiffness coefficients for SLS nylon 12 under different degrees of densification as measured by ultrasonic technique, Rapid Prototyping Journal, vol. 14 no. 5, 2008, p. 260-270.
  • 15. Singh R., 2013, Some investigations for small-sized product fabrication with FDM for plastic components, Rapid Prototyping Journal, 2013, vol. 19, no 1, 2013, p. 58-63.
  • 16. Starr, T.L., Gornet, T.J. and Usher, J.S., 2011, The effect of process conditions on mechanical properties of laser sintered nylon, Rapid Prototyping Journal, Vol. 17 No. 6, 2011.
  • 17. Usher J.S., Gornet T.J., Starr T.L., 2013, Weibull Growth Modeling of Laser-Sintered Nylon 12, Rapid Prototyping Journal, vol. 19, nr 4, 2013, p. 301-306.
  • 18. Usher, J.S. and Srinivasan, M.K., 2001, Quality improvement of a selective laser sintering process, Quality Engineering, vol. 13 no. 2, 2001, p. 161-168.
  • 19. Vandenbroucke B., Kruth J-P., 2007, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, vol. 13, nr 4, 2007, p. 196-203.
  • 20. Wesley M., Cunico M., de Carvalho J., Optimization of positioning system of FDM machine design using analytical approach, Rapid Prototyping Journal, vol. 19, nr 3, 2013, p. 144-152.
  • 21. Zarringhalam, H., Hopkinson, N., Kampermanb, N.F. and Vlieger, J.J.de , 2013, Effects of processing on microstructure and properties of SLS nylon 12, Materials Science & Engineering A: Structural Materials Properties Microstructure and Processing, vol. 435, 2006, p. 172-180.
  • 22. Standards: DIN EN ISO 527, DIN EN ISO 178, DIN EN ISO 179, DIN 53505, DIN 53736.
  • 23. www.eos.info [2013].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f514e72a-f395-4ae9-abcf-ec2c6a915957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.