PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indentation Hardness and Tribological Wear under the Conditions of Sliding Friction of the Surface Layer of Composites Based on Methacrylate Resins with Ceramic Nanofiller

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biomaterials, which are the subject of this work, are the dental restorative materials classified as light cured polymer matrix ceramic composites or resin based composites. The dental composite materials are needed for the repairment of human teeth. Fillings and other dental applications are exposed to the biomechanical loading in the chewing process. The wear resistance and hardness are important functional properties. Currently, nanofiller composites play an important role among dental composites. The objective of this paper was to study and analyze the friction, mechanical and wear properties of the surface of polymer matrix ceramic filed nanocomposites. Three material groups were used, one commercial composite Filek Z550 (3M ESPE, USA) and two experimental composites Ex-nano(G) and Ex-flow(G). The microindentation tests were conducted on the Micro Combi Tester device (Anton Paar GmbH, Germany). Rotating sliding ball-on-disc friction tests were performed against an alumina ball on 5 N load at 1 Hz in the bath of artificial saliva at 37°C. The linear wear and friction coefficients were evaluated. In the light of the obtained results of contact and friction strength tests, it was found that the performance depends on the production technology of the polymer-ceramic composites. The test results indicate that the share of filler nanoparticles the in experimental composites is advantageous due to the tribological wear.
Twórcy
  • University of Economics and Innovation in Lublin, Transport and Computer Science Faculty, Projektowa 4, Lublin 20-209, Poland
autor
  • University of Economics and Innovation in Lublin, Transport and Computer Science Faculty, Projektowa 4, Lublin 20-209, Poland
Bibliografia
  • 1. Abdelbary A., 2 – Sliding mechanics of polymers, Editor(s): Abdelbary A. Wear of Polymers and Composites, Woodhead Publishing, 2014, 37–66.
  • 2. Al-Haik M. S., Trinkle S., García D., Yang F., Martínez U., Sumali H. & Miltenberger S. Investigation of the nanomechanical and tribological properties of dental materials. Int. J. Theoretical and Applied Multiscale Mechanics, Vol. 1, No. 1, 2009
  • 3. Antunes P.V., Ramahlo A., Carrihlo E.V.P. Mechanical and wear behaviours of nano and microfilled polymeric composite: Effect of filler fraction and size. Materials and Design, 61, 2014, 50–60.
  • 4. Ashby M.F., Jones D.R.H. Engineering Materials 2. An Introduction to Microstructures, Processing and Design. 3rd ed., Butterworth–Heinemann, 2006.
  • 5. ASTM Standard G99: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.
  • 6. ASTM Standard G132: Standard Test Method for Pin Abrasion Testing.
  • 7. Barton J., Niemczyk A., Czaja K., Korach Ł., Sacher-Majewska B. Kompozyty, biokompozyty i nanokompozyty polimerowe. Otrzymywanie, skład, właściwości i kierunki zastosowań. Chemik, 4 (68), 2014, 280–287
  • 8. Beun S., Glorieux T., Devaux J., Vreven J., Leloup G. Characterizaton of nanoflled compared to universal and microflled composites. Dental Materials, 23, 2007, 51–59.
  • 9. Blau P. The significance and use of the friction coefficient. Tribology International, 9 (34), 2001, 585–591.
  • 10. Borba M., Bona A.D., Cecchetti D. Flexural strength and hardness of direct and indirect composites. Brazilian Oral Research, 1 (23), 2009, 5–10.
  • 11. Bucaille J. L., Stauss S., Schwaller P., Michler J. A new technique to determine the elastoplastic properties of thin metal lic films using sharp indenters. Thin Solid Films, 2004, 447–448:239–45.
  • 12. Carreira M., Anunes P.V., Ramahlo A. L., Carrihlo E. Thermocycling effect of mechanical and tribological chracterizaton of two indirect dental restoratve materials. Journal of Brazilian Society of Mechanical Sciences and Engineering, 38, 2016, 5.
  • 13. DeLong R. Intra-oral restorative materials wear: Rethinking the current approaches: How to measure wear. Dental Materials, 8 (22), 2006, 702–711.
  • 14. dos Reis A.C., de Castro D.T., Schiavon M.A., da Silva L.J., Agnelli M.A. Microstructure and mechanical propertes of composite resins subjected to accelerated artfcial aging. Brazilian Dental Journal, 24 (6), 2013, 599–604.
  • 15. El-Safy S., Akhtar R., Silikas N., Wats D.C. Nanomechanical propertes of dental resin-composites. Dental Materials, 28, 2012, 1292–1300.
  • 16. German J. Podstawy mechaniki kompozytów włóknistych. Wyd. PK, Kraków, 2001.
  • 17. Gouldstone A., Chollacoop N., Dao M., Li J., Minor A.M., Shen Y.L. Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Materialia, 55, 2007, 4015–4039.
  • 18. Hardiman M., Vaughan M., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test., 52, 2016, 157–166.
  • 19. Ikeda H., Nagamatsu Y., Shimizu H. Data on changes in flexural strength and elastic modulus of dental CAD/CAM composites after deterioration tests. Data in brief, 24, 2019, 103889.
  • 20. Ilie N.; Hilton, T.J., Heintze, S.D., Hickel R., Watts D., Silikas N., Stansbury J.W., Cadenaro M., Ferracane J.L. Academy of Dental Materials guidance- Resin composites: Part I-Mechanical properties. Dent. Mater, 33, 2017, 880–894.
  • 21. Kim K.H., Ong J L., Okuno O. The effect of fller loading and morphology on the mechanical propertes of contemporary composites. J Prosthet Dent, 87, 2002, 642–649.
  • 22. Kleczewska J., Bieliński D.M. Fricton and wear of resin – based dental materials. Archives Of Civil And Mechanical Engineering, 7(4), 2007, 87–96.
  • 23. Królikowski W., Rosłoniec Z. Nanokompozyty polimerowe. Kompozyty (Composites), 9 (4), 2009, 3–15.
  • 24. Leyland M.A. The role of nanocomposite coatings in surface engineering. In Proceedings of the 5th International Surface Engineering Congress, Jackson M.J., Eds. ASM International, Washington, USA, 2006.
  • 25. Łępicka M., Grądzka-Dahlke M., Pieniak D., Pasierbiewicz K., Niewczas A. Effect of mechanical properties of substrate and coating on wear performance of TiN- or DLC-coated 316LVM stainless steel. Wear 382–383, 2017, 62–70.
  • 26. Łępicka, M., Grądzka-Dahlke M., Pieniak D., Pasierbiewicz K., Kryńska K., Niewczas A. Tribological performance of titanium nitride coatings: A comparative study on TiN-coated stainless steel and titanium alloy. Wear, 422–423, 2019, 68–80.
  • 27. Oliver W., Pharr G.M.J. Measurement of hardness and elastic modulus by instrumented indentation. Advances in understanding and refinements to methodology. J. Mater. Res., 19, 2004, 1564–1583.
  • 28. Oyen M.L., Ko C.C. Indentation variability of natural nanocomposite materials. Journal of Materials Research, 23, 2008, 760–7.
  • 29. Pieniak D., Walczak A., Niewczas A., Przystupa K. The Effect of Thermocycling on Surface Layer Properties of Light Cured Polymer Matrix Ceramic Composites (PMCCs) Used in Sliding Friction Pair. Materials, 12 (17), 2019, 2776.
  • 30. Sajewicz E., Kulesza Z. A new tribometer for friction and wear studies of dental materials and hard tooth tissues. Tribol. Int. 40, 2007, 885–95.
  • 31. Schuh C.A. Nanoindentation studies of materials. Materials Today, 9, 2006, 32–40.
  • 32. Shalaby W., Shalaby U. Polymers for dental and orthopedic applications. CRC Press, Boca Raton, 2007.
  • 33. Sneddon I.N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Inter. J. Eng. Sci., 3, 1965, 47–57.
  • 34. Szafran M., Cwalińska A., Jałbrzykowski M. Wpływ dodatku nowych rozgałęzionych żywic uretanowo-metakrylowych na właściwości mechaniczne i tribologiczne kompozytów ceramiczno-polimerowych do zastosowań stomatologicznych. Kompozyty (Composites), 8, 2008, 11–14.
  • 35. Zhou1 Z.R. and Zheng J. Tribology of dental materials: a review. J. Phys. D: Appl. Phys, 41, 2008, 113001.
  • 36. Tornavoi D.C., Sato S., Silva L.J., Agnelli J.A.M., dos Reis A.C. Analysis of surface hardness of artfcially aged resin composites. Materials Research, 1 (5), 2012, 9–14.
  • 37. Turssi C.P., De Moraes Purquerio B., Serra M.C. Wear of dental resin composites: Insights into underlying processes and assessment methods – A review. Journal of Biomedical Materials Research B, 65, 2003, 280–285.
  • 38. Walczak A., Pieniak D., Niewczas A., Gil L. Laboratory studies of the influence of thermal cycling on anti-wear properties of composites used in biotribological friction pairs. Tribologia, 280, 2018, 143–149.
  • 39. Ziąbka M., Szaraniec B. Kompozyty polimerowe z dodatkiem włókien naturalnych. Kompozyty (Composites), 2 (10), 2010, 138–142
  • 40. 3M ESPE Filtek Z550 Nano Hybrid Universal Restorative. Technical Data Sheet. Available online: http://multimedia.3m.com/mws/media/744411O/ filtek-z550-technical-data-sheet-cee.pdf (accessed on 1 May 2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f50c42f0-09df-4bf0-b191-4dc79c4cad0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.