PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl)-γ-aminopropyl trimethoxy silane pretreatments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eucalyptus fibers were modified with N-β(aminoethyl)-γ-aminopropyl trimethoxy silane to research the fiber surface’s changes and the influence of the treatment on the mechanical properties, flame resistance, thermal conductivity and microstructure of eucalyptus fiber composite phenolic foams (EFCPFs). The results showed that the partial of hemicelluloses, waxes, lignin and impurities from the fiber surface were dissolved and removed. Compared with untreated EFCPFs, the mechanical properties of treated EFCPFs were increased dramatically; The size of cells was smaller and the distribution was more uniform; The thermal conductivities were basically reduced; Especially the ratio of mass loss decreased obviously. However limited oxygen indexs (LOIs) reduced. And the mechanical properties and LOIs of EFCPFs were basically decreased with the increase of eucalyptus fibers. By comprehensive analysis, the results showed that the interfacial compatibility has been significantly improved between eucalyptus fibers and phenolic resin. And the suitable dosage of eucalyptus fibers was about 5%.
Rocznik
Strony
116--121
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Nanjing Forestry University, College of Materials Science and Engineering, Nanjing 210037, China
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Jiangsu Province; Nanjing 210042, China
autor
  • Chinese Academy of Forestry, Beijing 100091, China
Bibliografia
  • 1. Ma, Y., Wang, J., Xu, Y., Wang, C. & Chu, F. (2015). Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 132(44). DOI: 10.1002/app.42730.
  • 2. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. Journal of applied polymer science. 117(6):3545–3550. DOI: 10.1002/app.32280.
  • 3. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y. & Yuen, R. K.. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. Journal of Polymer Research. 19(3):1–10. DOI: 10.1007/s10965-012-9831-7.
  • 4. Rangari, V. K., Hassan, T. A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B. C.. (2007). Cloisite clay-infused phenolic foam nanocomposites. Journal of applied polymer science. 103(1):308–314. DOI: 10.1002/app.25287.
  • 5. Shen, H., Lavoie, A. J. & Nutt, S. R. (2003). Enhanced peel resistance of fiber reinforced phenolic foams. Composites Part A: Appl. Sci. Manufact. 34(10), 941–948. DOI: 10.1016/S1359-835X(03)00210-0.
  • 6. Shen, H. & Nutt, S. (2003). Mechanical characterization of short fiber reinforced phenolic foam. Composites Part A: Applied science and manufacturing. 34(9), 899–906. DOI:10.1016/S1359-835X(03)00136-2.
  • 7. Bledzki, A. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.
  • 8. Canche-E scamilla, G., Cauich-Cupul, J., Mendizabal, E., Puig, J., Vazquez-Torres, H. & Herrera-Franco, P. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A: Appl. Sci. Manufact. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.
  • 9. Mitra, B., Basak, R. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1.
  • 10. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R. & Banerjee, A. (1998). Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.
  • 11. Xie, Y., Hill, C.A., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Appl. Sci. Manufact. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.
  • 12. Yang, Y. & He, J. (2015). Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer. Polymer Composites 36(9), 1584–1589. DOI: 10.1002/pc.23066.
  • 13. Maldas, D. & Kokta, B. (1993). Performance of hybrid reinforcements in PVC composites. I: Use of surface-modified mica and wood pulp as reinforcements. J. Test. Evaluat. 21(1), 68–72. DOI: 10.1177/073168449201101002.
  • 14. Mohanty, A. & Misra, M. & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.
  • 15. Bledzki, A., Gassan, J. & Theis, S. (1998). Wood-filled thermoplastic composites. Mech. Comp. Mat. 34(6):563–568. DOI: 10.1007/BF02254666.
  • 16. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Comp. Sci. Technol. 63(9), 1247–1254. DOI: 10.1016/S0266-3538(03)00094-0.
  • 17. Bachtiar, D., Sapuan, S. & Hamdan, M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design. 29(7), 1285–1290. DOI: 10.1016/j.matdes.2007.09.006.
  • 18. Bledzki, A., Reihmane, S. & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329-1336. DOI:10.1002/(SICI)1097-4628(19960222)59:8<1329::AIDAPP17>3.0.CO;2-0.
  • 19. Islam, M. & Pickering, K. (2007). Influence of alkali treatment on the interfacial bond strength of industrial hemp fibre reinforced epoxy composites: Effect of variation from the ideal stoicheometric ratio of epoxy resin to curing agent. Adv. Mater. Res. 29, 319–322. DOI:10.4028/www.scientific.net/AMR.29-30.319.
  • 20. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Intern. J. Adhes. Adhesiv. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.
  • 21. Mittal, K. L. (2007). Silanes and other coupling agents. CRC Press.
  • 22. Colom, X., Carrasco, F., Pages, P. & Canavate, J. (2003). Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Sci. Technol. 63(2), 161–169. DOI: 10.1016/S0266-3538(02)00248-8.
  • 23. Pickering, K., Abdalla, A., Ji, C., McDonald, A. & Franich, R. (2003). The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Appl. Sci. Manufact. 34(10), 915–926. DOI: 10.1016/S1359-835X(03)00234-3.
  • 24. Te-fu, Q., Luo-hua, H. & Gai-yun, L. (2005). Effect of chemical modification on the properties of wood/polypropylene composites. J. For. Res. 16(3), 241–244. DOI: 10.1007/BF02856824.
  • 25. Towo, A. N. & Ansell, M. P. (2008). Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Sci. Technol. 68(3), 925–932. DOI:10.1016/j.compscitech.2007.08.022.
  • 26. Silverstein, R. M., Webster, F. X., Kiemle, D. J. & Bryce, D. L. (2014). Spectrometric identification of organic compounds. John Wiley & Sons.
  • 27. Lu, B., Zhang, L. & Zeng, J. E. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.
  • 28. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R. & Herrera-Franco, P. (1999). Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering, 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.
  • 29. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A: Appl. Sci. Manufact. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.
  • 30. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr. Polym. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.
  • 31. Cuicui, W. & Dai Zhen, X. G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. 8:016. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f50bea77-7126-4144-a3b5-0fb4a8804047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.