PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects of Phytoremediation and Phytoindication of Oil-Contaminated Soils with the Help of Energy Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of energy plants from the point of view of their suitability for remediation of oil-contaminated territories was carried out. Plantations of Salix viminalis L., Helianthus tuberosus L. and Medicago sativa L. were planted with the purpose of remediation of the territory where active oil production is conducted. The prospect of using Salix viminalis and Helianthus tuberosus as effective restorers of technogenically-transformed environment quality was revealed. The limiting factors restricting the growth of Salix viminalis on degraded soils were established, involving dry air and insufficient soil moisture. Medicago sativa is sensitive to the level of soil contamination by pollutants and can act as a phytoindicator of the environmental quality of oil-contaminated ecosystems.
Rocznik
Strony
147--154
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Institute of Natural Sciences and Tourism, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Carpathian Street, 76000, Ivano-Frankivsk, Ukraine
  • Institute of Natural Sciences and Tourism, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Carpathian Street, 76000, Ivano-Frankivsk, Ukraine
  • Institute of Natural Sciences and Tourism, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Carpathian Street, 76000, Ivano-Frankivsk, Ukraine
Bibliografia
  • 1. Chekol T.,Vough L. 2001. A Study of the Use of Alfalfa (Medicago sativa L.) for the Phytoremediation of Organic Contaminants in Soil. Remediation Journal banner, 11(4), 89–101.
  • 2. Courchesne F., Turmel M., Cloutier-Hurteau B., Constantineau S., Munro L., Labrecque M. 2017. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. International Journal of Phytoremediation, 19 (6) 545–554. https://doi.org/10.1080/15226514.2016.1267700
  • 3. Cristaldi A., ContiG., Eun HeaJho E., Zuccarello P., Grasso A., Copat C., Ferrante M. 2017. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002
  • 4. Denisyuk S.P., Kotsar O.V., Chernetskaya Yu.V. 2016. Energy efficiency of Ukraine. Best project ideas: Project «Professionalization and stabilization of energy management in Ukraine». K.: KPI them. I. Sikorsky, 79.
  • 5. Feshchenko V.P. 2012. Ways of minimizing the radioecological burden on the population of Zhytomyr region. Ecological safety. Bulletin of the Mikhail Ostrogradsky Str., 4 (75), 160–164.
  • 6. Geletukha G.G., Zhelezna T.A., Tryboy O.V. 2014. Prospects for growing and using energy crops in Ukraine. Analytical note BAU № 10 Bioenergetic Association of Ukraine, 33 p.
  • 7. Geletukha G.G., Zhelezna T.A., Oliynyk E.N. 2013. Prospects for the production of thermal energy from biomass in Ukraine. Industrial Heat Engineering, 35 (4), 5–15.
  • 8. Glibovytska N.I., Karavanovych K.B. (2018). Morphological and physiological parameters of woody plants under conditions of environmental oil pollution. Ukrainian Journal of Ecology, 8(3), 322–327.
  • 9. Gomenik M.Ya. 2013. Atlas of high-yielding bioenergy crops. Bioenergetics, 2, 6–7.
  • 10. Gouda A., El-Gendy A., Abd El-Razek T., El-Kassa H. 2016. Evaluation of Phytoremediation and Bioremediation for Sandy Soil Contaminated with Petroleum Hydrocarbons. International Journal of Environmental Science and Development, 7(7), 490–493.
  • 11. Jahantab E., Jafari M., Motasharezadeh B., Ali T. 2018. Remediation of Petroleum-Contaminat ed Soils using ‎Stipagrostis plumosa, Calotropis procera L., and Medicago sativa ‎under Different Organic Amendment Treatments. 6, (2), 101–109.
  • 12. Janssen J., Weyens N., Croe S., Beckers B., Meiresonn L., Van Peteghem P., Carlee R., Vangronsvel J. 2015. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. International Journal of Phytoremediation, 17 (11), 1123–1136, DOI: 10.1080/15226514.2015.1045129
  • 13. Hultgren J., Pizzul L. 2009. Degradation of PAH in a Creosote-Contaminated Soil. A Comparison Between the Effects of Willows (Salix Viminalis), Wheat Straw and A Nonionic Surfactant. International Journal of Phytoremediation, 12(1), 54–66. https://doi.org/10.1080/15226510902767122
  • 14. Kachala T.B. 2014. Investigation of oil-contaminated land plots in Ivano-Frankivsk region. Ecological safety and balanced resource use, scientific and technical journal, Ivano-Frankivsk. Special Issue. 4–9.
  • 15. Kachala T.B. 2016. Monitoring of the soil cover of exhausted oil and gas deposits. Ecological safety and balanced resource use, scientific and technical journal, Ivano-Frankivsk. 2. 40–44.
  • 16. Kidd P., Mench M., Álvarez-López V., Bert V., Dimitriou I., Friesl-Hanl W., Herzig R., Janssen J., Kolbas A., Mülle I., Ne S., Renella G., Ruttens A., Vangronsveld J., Puschenreiter M. 2015. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. International Journal of Phytoremediation. 17 (11), 1005–1037. https://doi.org/10.1080/15226514.2014.1003788
  • 17. Kurgan V.G. 2013. Bioenergy potential of perennial herbaceous phytocoenoses. Collection of scientific works of the Institute of Bioenergetic Cultures, 19, 63–68.
  • 18. Mittonab F., Gonzalezab M., Peñac A., Miglioranzaab K.. 2012. Effects of amendments on soil availability and phytoremediation potential of aged p,p′-DDT, p,p′-DDE and p,p′-DDD residues by willow plants (Salix sp.). Journal of Hazardous Materials, 203–204, 62–68. https://doi.org/10.1016/j.jhazmat.2011.11.080
  • 19. Stalsa M., Carleera R., Reggersa G., Schreursb S., Ypermana J. 2010. Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis oil and char/ash fraction. Journal of Analytical and Applied Pyrolysis, 89 (1), 22–29. https://doi.org/10.1016/j.jaap.2010.05.001
  • 20. Yergeau E., Sanschagrin S., Maynard C., St-Arnaud M., Greer C. 2014. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. The ISME Journal, 8, 344–358.
  • 21. Zimmera D., Krusea J., Bauma C., Borcab C., Lauec M., Haused G., Meissnere R., Leinwebera P. 2011. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy. Science of The Total Environment. 409 (19), 4094–4100. https://doi.org/10.1016/j.scitotenv.2011.06.038
  • 22. RuttensA., Boulet J., Weyens N., Smeets K., Adriaensen K., Meers E. 2011. Short Rotation Coppice Culture of Willows and Poplars as Energy Crops on Metal Contaminated Agricultural Soils. International Journal of Phytoremediation. 13, 194–207. https://doi.org/10.1080/15226514.2011.568543
  • 23. Weyens N. 2013. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. Journal of Soils and Sediments, 13 (1), 176–188.
  • 24. Sylvaina B., Mikael M., Florie M., Emmanuel J., Marilyne S., Sylvain B., Domenico M. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. CATENA, 136, 44–52. https://doi.org/10.1016/j.catena.2015.07.008
  • 25. TőzsérD., Magura T., Simon E.. 2017. Heavy metal uptake by plant parts of willow species: A meta-analysis. Journal of Hazardous Materials. 336, 101–109. https://doi.org/10.1016/j.jhazmat.2017.03.068
  • 26. Lebrun M., Macri C., Miard F., Hattab-Hambli N., Motelica-Hein M., Domenico Morabito, Bourgerie S. 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration, 182, B, 149–156. https://doi.org/10.1016/j.gexplo.2016.11.016
  • 27. Marchand C., Hogland W., Kaczala F., Jani Y., Marchand L., Augustsson A., Hijri M. 2016. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. International Journal of Phytoremediation. 18(11), 1136–1147. https://doi.org/10.1080/15226514.2016.1186594
  • 28. Minoui S., Shahriari M., Minai D. 2015. Phytoremediation of Crude Oil-Contaminated Soil by Medicago sativa (Alfalfa) and the Effect of Oil on its Growth. Phytoremediation for Green Energy, 123–129. DOI: 10.1007/978–94–007–7887–0_8
  • 29. Musilova L., Ridl J., Polivkova M., Macek T., Uhlik O. 2016. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int. J. Mol. Sci., 17(8), 1205. https://doi.org/10.3390/ijms17081205
  • 30. Lim M.W., Lau E.V., Poh P.E. 2016. A comprehen sive guide of remediation technologies for oil contaminated soil – Present works and future directions. Marine Pollution Bulletin, 109 (1), 14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023
  • 31. Li J., Zhang D.,, Zhou P., Liu Q. 2018. Assessment of Heavy Metal Pollution in Soil and Its Bioaccumulation by Dominant Plants in a Lead-Zinc Mining Area, Nanjing. Huan Jing Ke Xue. 39(8), 3845–3853. doi: 10.13227/j.hjkx.201712086.
  • 32. Liu R., Jadeja R., Zhou Q., Liu Z. 2012. Treatment and Remediation of Petroleum-Contaminated Soils Using Selective Ornamental Plants. Environmental Engineering Science, 29(6), 494–501. doi:10.1089/ees.2010.0490
  • 33. Long X., Ni N., Wang L., Wang X., Wang J., Zhang Z., Zed R., Liu Z., Shao H. 2012. Phytoremediation of Cadmium-Contaminated Soil by Two Jerusalem Artichoke (Helianthus tuberosus L.) Genotypes. Xiaohua Long, 41(2), 202–209. https://doi.org/10.1002/clen.201100668
  • 34. Panchenko L., Turkovskaya O., Muratova A. 2017. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil. Environmental Science and Pollution Research 24, 3117–3130. DOI: 10.1007/s11356–016–8025-y
  • 35. Royik MV, Gomenik M.Ya., Mamysur V.V. 2013. Prospects for growing energy willow for the production of solid biofuels. Bioenergetics, 2, 18–19.
  • 36. Shevchyk L.Z., Romanyuk O.I. 2017. Analysis of biological methods of recovery of oil-contaminated soils. Scientific Journal ScienceRise: Biological Science, No. 1 (4), 31–39.
  • 37. Tsvetkov S., Doncheva S. 2015. Molecular responses of plants to environmental heavy metal contamination: lead and the use of sunflower in phytoremediation. Genetics and Plant Physiology, Volume 5(3–4), 201–230.
  • 38. Xiao N., Liu R., Jin C., Dai Y. 2015. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering, 75, 384–391. https://doi.org/10.1016/j.ecoleng.2014.12.008
  • 39. Yergeau E., Tremblay J., Joly S., Labrecque 3., Maynard C., Pitre F., St-Arnaud 3., Greer C. 2018. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. The ISME Journalvolume, 12, 869–884.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f50b31d1-76fe-4d48-a16d-d9534ad8be24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.