Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Seismic data analysis often faces the challenge of random noise contamination from various sources. To overcome this, innovative noise attenuation methods utilizing seismic signal properties are needed. This study focuses on efficiently suppressing random noise in the domain of time and frequency by accurately estimating instantaneous frequency using the single-valued group delay characteristic of seismic signals. The time-reassigned synchrosqueezing transform (TSST) and its second-order variant (TSST2) offer high-resolution time-frequency representations (TFRs) for noise suppression. Expanding on these advancements, we propose an efficient noise suppression method that integrates the adaptive thresholding model into the TSST2 framework and employs sparse representation of the TFR through low-rank estimation. This method effectively attenuates noise while preserving essential signal information. The proposed approach operates trace by trace on recorded data, initially transforming it into a sparse subspace using TSST2. The adaptive thresholding model then decomposes the resulting TFR into sparse and semi-low-rank components, achieving a high-resolution and sparse TFR for efficient separation of noise and signal. After noise suppression, the seismic data can be fully reconstructed by inversely transforming the semilow-rank component data into the time domain. This method addresses previous limitations in noise attenuation techniques and provides a practical solution for enhancing seismic data quality.
Wydawca
Czasopismo
Rocznik
Tom
Strony
253--270
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrud, Iran
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
autor
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrud, Iran
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrud, Iran
- Helmholtz Centre for Ocean Research Kiel, Geothermics and Information Systems, Hannover, Germany
autor
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
Bibliografia
- 1. Abma R, Claerbout J (1995) Lateral prediction for noise attenuation by tx and fx techniques. Geophysics 60(6):1887-1896
- 2. Ahrabian A, Looney D, Stanković L et al (2015) Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Process 106:331-341
- 3. Alaei N, Roshandel Kahoo A, Kamkar Rouhani A et al (2018) Seismic resolution enhancement using scale transform in the time-frequency domain. Geophysics 83(6):V305-V314
- 4. Anvari R, Siahsar MAN, Gholtashi S et al (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens 55(11):6574-6581
- 5. Anvari R, Mohammadi M, Kahoo AR (2018) Enhancing 3-d seismic data using the t-svd and optimal shrinkage of singular value. IEEE J Sel Topics Appl Earth Obs Remote Sens 12(1):382-388
- 6. Anvari R, Kahoo AR, Mohammadi M et al (2019) Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain. IEEE J Sel Topics Appl Earth Obs Remote Sens 12(5):1612-1618
- 7. Anvari R, Kahoo AR, Monfared MS et al (2021) Random noise attenuation in seismic data using hankel sparse low-rank approximation. Comput Geosci 153:104802
- 8. Anvari R, Mohammadi M, Mafakheri J et al (2023) Denoising of multidimensional seismic data in the physical domain by a new non-local self similarity method. Earth Sci Inform 16(1):1041-1060
- 9. Auger F, Flandrin P, Lin YT et al (2013) Time-frequency reassignment and synchrosqueezing: an overview. IEEE Signal Process Mag 30(6):32-41
- 10. Balasubramanian P, Ferrari G, Amabili M (2018) Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech Syst Signal Process 111:376-398
- 11. Benaych-Georges F, Nadakuditi RR (2012) The singular values and vectors of low rank perturbations of large rectangular random matrices. J Multivar Anal 111:120-135
- 12. Chen K, Sacchi MD (2015) Robust reduced-rank filtering for erratic seismic noise attenuation. Geophysics 80(1):V1-V11
- 13. Chen Y, Ma J (2014) Random noise attenuation by fx empirical-mode decomposition predictive filtering. Geophysics 79(3):V81-V91
- 14. Fa’al Rastegar SA, Javaherian A, Farajkhah NK et al (2016) Effective parameters in ground roll attenuation using fo crs stacking. J Appl Geophys 135:249-260
- 15. Fang Y, Hu Y, Li M et al (2021) Second-order horizontal multi-synchrosqueezing transform for hydrocarbon reservoir identification. IEEE Geosci Remote Sens Lett 19:1-5
- 16. Fourer D, Auger F (2019) Second-order time-reassigned synchrosqueezing transform: application to draupner wave analysis. In 2019 27th European signal processing conference (EUSIPCO). IEEE, pp 1-5
- 17. Golub GH, Hoffman A, Stewart GW (1987) A generalization of the eckart-young-mirsky matrix approximation theorem. Linear Algebra Appl 88:317-327
- 18. He D, Cao H, Wang S et al (2019) Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing. Mech Syst Signal Process 117:255-279
- 19. He Z, Tu X, Bao W et al (2020) Gaussian-modulated linear group delay model: application to second-order time-reassigned synchrosqueezing transform. Signal Process 167:107275
- 20. He Z, Tu X, Bao W et al (2020) Gaussian-modulated linear group delay model: application to second-order time-reassigned synchrosqueezing transform. Signal Process 167:107275
- 21. Hu Y, Tu X, Li F (2019) High-order synchrosqueezing wavelet transform and application to planetary gearbox fault diagnosis. Mech Syst Signal Process 131:126-151
- 22. Josse J, Sardy S (2016) Adaptive shrinkage of singular values. Stat Comput 26(3):715-724
- 23. Kreimer N, Sacchi MD (2012) A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics 77(3):V113-V122
- 24. Lari HH, Naghizadeh M, Sacchi MD et al (2019) Adaptive singular spectrum analysis for seismic denoising and interpolation. Geophysics 84(2):V133-V142
- 25. Li L, Cai H, Han H et al (2020) Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process 166:107231
- 26. Liang C, Lin H, Ma H (2022) Low-frequency seismic random noise attenuation based on epll-tv under double prior constraints. J Appl Geophys 203:104689
- 27. Lin R, Liu Z, Jin Y (2021) Instantaneous frequency estimation for wheelset bearings weak fault signals using second-order synchrosqueezing s-transform with optimally weighted sliding window. ISA Trans 115:218-233
- 28. Liu N, Gao J, Jiang X et al (2018) Seismic instantaneous frequency extraction based on the sst-maw. J Geophys Eng 15(3):995-1007
- 29. Liu W, Cao S, Wang Z et al (2018) A novel approach for seismic time-frequency analysis based on high-order synchrosqueezing transform. IEEE Geosci Remote Sens Lett 15(8):1159-1163
- 30. Lu W, Li F (2013) Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram. Geophysics 78(2):V43-V51
- 31. Mafakheri J, Kahoo AR, Anvari R et al (2022) Expand dimensional of seismic data and random noise attenuation using low-rank estimation. IEEE J Sel Topics Appl Earth Obs Remote Sens 15:2773-2781
- 32. Mahdavi A, Kahoo AR, Radad M et al (2021) Application of the local maximum synchrosqueezing transform for seismic data. Digit Signal Process 110:102934
- 33. Nadakuditi RR (2014) Optshrink: an algorithm for improved lowrank signal matrix denoising by optimal, data-driven singular value shrinkage. IEEE Trans Inf Theory 60(5):3002-3018
- 34. Nikoo A, Kahoo AR, Hassanpour H et al (2016) Using a time-frequency distribution to identify buried channels in reflection seismic data. Digit Signal Process 54:54-63
- 35. Oberlin T, Meignen S, Perrier V (2014) The Fourier-based synchrosqueezing transform. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 315-319
- 36. Pham DH, Meignen S (2017) High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal. IEEE Trans Signal Process 65(12):3168-3178
- 37. Rastegar SAF, Javaherian A, Farajkhah NK et al (2016) Ground-roll attenuation using modified common-offset-common-reflectionsurface stacking. Appl Geophys 13(2):353-363
- 38. Shirazi M, Roshandel Kahoo A, Radad M et al (2023) Detecting shallow gas reservoir in the f3 block, The Netherlands, using offshore seismic data and high-resolution multi-synchrosqueezing transform. Nat Resour Res 32(5):2007-2035
- 39. Sinha S, Routh PS, Anno PD et al (2005) Spectral decomposition of seismic data with continuous-wavelet transform. Geophysics 70(6):P19-P25
- 40. Srebro N, Jaakkola T (2003) Weighted low-rank approximations. In: Proceedings of the 20th international conference on machine learning (ICML-03), pp 720-727
- 41. Tian R, Lei X, Hu J (2020) Application of time-frequency entropy based on high-order synchrosqueezing transform in reservoir prediction. Interpretation 8(3):T667-T674
- 42. Wang S, Chen X, Selesnick IW et al (2018) Matching synchrosqueezing transform: a useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis. Mech Syst Signal Process 100:242-288
- 43. Wiciak P, Cascante G, Polak M (2021) Novel application of wavelet synchrosqueezed transform (wsst) in laser-vibrometer measurements for condition assessment of cementitious materials. NDT & E Int 120:102424
- 44. Wu G, Zhou Y (2018) Seismic data analysis using synchrosqueezing short time Fourier transform. J Geophys Eng 15(4):1663-1672
- 45. Yi C, Yu Z, Lv Y et al (2020) Reassigned second-order synchrosqueezing transform and its application to wind turbine fault diagnosis. Renew Energy 161:736-749
- 46. Yu G, Yu M, Xu C (2017) Synchroextracting transform. IEEE Trans Ind Electron 64(10):8042-8054
- 47. Yu G, Lin T, Wang Z et al (2020) Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery. IEEE Trans Ind Electron 68(2):1486-1496
- 48. Zhang C, Li Y, Lin H et al (2015) Signal preserving and seismic ran¬dom noise attenuation by hurst exponent based time-frequency peak filtering. Geophys J Int 203(2):901-909
- 49. Zhang G (2018) Time-phase amplitude spectra based on a modified short-time Fourier transform. Geophys Prospect 66(1):34-46
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5072350-a6ec-4bac-90c3-96a13ddafedb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.