PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical study on lateral stability of temporary structures

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the lateral performance of temporary structures, which consist of slender members and corresponding joints, under both vertical and horizontal loads. The ultimate bearing capacity, failure modes and the strain distribution of members are illustrated. Experimental results indicate that the lateral stability of the temporary structures is weaker than the vertical stability. Diagonal bracings are the main load-bearing members which resist horizontal loads while the horizontal bars are used to keep stress low. Based on the joint mechanical parameters and the probabilistic models of initial geometric imperfection, the stochastic finite element models (SFEMs) using the Monte Carlo method have been established. The models can consider the semi-rigid performances of joints and initial geometric imperfection. The numerical results demonstrate consistency with structural tests data. Moreover, the influences of structural layers and spans are analysed based on the SFEM. Multiple factors, including spans, layers and upper vertical loads, should be considered when the lateral capacity of temporary structures is calculated. A rapid prediction formula of the lateral stability of temporary structure has been obtained.
Rocznik
Strony
1478--1490
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
  • Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
  • Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
  • Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
  • Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
Bibliografia
  • [1] M. Paschetto, T. Heidersdorf, D. Campbell, Large Temporary Structure for Special Event, Structures Congress, 2011, 2605–2612.
  • [2] S.G. Nacheman, K.J. Jackson, J.K. Nelson, M.J. Pinto, L. Valderruten, A. Bhagath, The Indiana State Fair Collapse Incident: Anatomy of a Failure, Congress on Forensic Engineering, 2012, 1070–1080.
  • [3] V.L. De Brito, R.L. Pimentel, Cases of collapse of demountable grandstands, J. Perform. Constr. Facil. 23 (3) (2009) 151–159.
  • [4] J.G. Parkhouse, D.J. Ewins, Crowd-induced rhythmic loading, Proc. Inst. Civil Eng. Struct. B 159 (5) (2006) 247–259.
  • [5] J. Yuan, L. He, F. Fan, C. Liu, K. Zhang, Dynamic modeling and vibration analysis of temporary grandstand due to crowdjumping loads, in: Eurodyn 2014: Ix International Conference on Structural Dynamics, 2014, 1051–1057.
  • [6] L. He, X.X. Zou, D.B. Xin, Wind load analysis of large temporary stand with variable upwind structure, Appl. Mech. Mater. 578–579 (578–579) (2014) 606–614.
  • [7] T. Ji, B.R. Ellis, A.J. Bell, Horizontal movements of frame structures induced by vertical loads, Proc. Inst. Civil Eng. Struct. B 156 (2) (2003) 141–150.
  • [8] T. Ji, Concepts for designing stiffer structures, Struct. Eng. 81 (21) (2003) 36–42.
  • [9] Y. Huang, H. Chen, D. Rosowsky, Y. Kao, Load-carrying capacities and failure modes of scaffold-shoring systems, part I: modeling and experiments, Struct. Eng. Mech. 10 (1) (2000) 53–66.
  • [10] R.G. Beale, Scaffold research—a review, J. Constr. Steel Res. 98 (2014) 188–200.
  • [11] E. Błazik-Borowa, J. Szer, The analysis of the stages of scaffolding „life” with regard to the decrease in the hazard at building works, Arch. Civil Mech. Eng. 15 (2) (2015) 516–524.
  • [12] H. Liu, L. Jia, S. Wen, Q. Liu, G. Wang, Z. Chen, Experimental and theoretical studies on the stability of steel tube–coupler scaffolds with different connection joints, Eng. Struct. 106 (2016) 80–95.
  • [13] M. Pieńko, E. Błazik-Borowa, Numerical analysis of loadbearing capacity of modular scaffolding nodes, Eng. Struct. 48 (2013) 1–9.
  • [14] T. Chandrangsu, K.J. Rasmussen, Investigation of geometric imperfections and joint stiffness of support scaffold systems, J. Constr. Steel Res. 67 (4) (2011) 576–584.
  • [15] J.-L. Peng, C.-W. Wu, S.-L. Chan, C.-H. Huang, Experimental and numerical studies of practical system scaffolds, J. Constr. Steel Res. 91 (2013) 64–75.
  • [16] T. Chandrangsu, K.J.R. Rasmussen, Structural modelling of support scaffold systems, J. Constr. Steel Res. 67 (5) (2011) 866–875.
  • [17] H. Zhang, K.J. Rasmussen, System-based design for steel scaffold structures using advanced analysis, J. Constr. Steel Res. 89 (2013) 1–8.
  • [18] H. Zhang, K.J.R. Rasmussen, B.R. Ellingwood, Reliability assessment of steel scaffold shoring structures for concrete formwork, Eng. Struct. 36 (2012) 81–89.
  • [19] H. Zhang, T. Chandrangsu, K.J.R. Rasmussen, Probabilistic study of the strength of steel scaffold systems, Struct. Saf. 32 (6) (2010) 393–401.
  • [20] V. Papadopoulos, G. Soimiris, M. Papadrakakis, Buckling analysis of I-section portal frames with stochastic imperfections, Eng. Struct. 47 (2013) 54–66.
  • [21] G. Chen, H. Zhang, K.J.R. Rasmussen, F. Fan, Modeling geometric imperfections for reticulated shell structures using random field theory, Eng. Struct. 126 (2016) 481–489.
  • [22] Z. Kala, Sensitivity and reliability analyses of lateral-torsional buckling resistance of steel beams, Arch. Civil Mech. Eng. 15 (4) (2015) 1098–1107.
  • [23] E. Błazik-Borowa, J. Gontarz, The influence of the dimension and configuration of geometric imperfections on the static strength of a typical façade scaffolding, Arch. Civil Mech. Eng. 16 (3) (2016) 269–281.
  • [24] J.Y.R. Liew, W.F. Chen, H. Chen, Advanced inelastic analysis of frame structures, J. Constr. Steel Res. 55 (1) (2000) 245–265.
  • [25] S.L. Chan, H.Y. Huang, L.X. Fang, Advanced analysis of imperfect portal frames with semirigid base connections, J. Eng. Mech. 131 (6) (2005) 633–640.
  • [26] Z. Sadovský, J. Kriváček, V. Ivančo, A. Ďuricová, Computational modelling of geometric imperfections and buckling strength of cold-formed steel, J. Constr. Steel Res. 78 (2012) 1–7.
  • [27] D. Dillard, Postbuckling of elastic columns with second-mode imperfection, J. Eng. Mech. – ASCE 132 (8) (2006) 898–901.
  • [28] S. Shayan, K.J.R. Rasmussen, H. Zhang, On the modelling of initial geometric imperfections of steel frames in advanced analysis, J. Constr. Steel Res. 98 (2014) 167–177.
  • [29] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method, Wiley-Interscience, Hoboken, N.J., 2008.
  • [30] C. Liu, L. He, Z.Y. Wu, J. Yuan, Experimental study on joint stiffness with vision-based system and geometric imperfections of temporary member structure, J. Civil Eng. Manag. 24 (1) (2018) 43–52.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4fd3fdd-0f29-4bcf-a0cd-6c8f1eef7c26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.