PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial variability and dynamics of soil pH, soil organic carbon and matter content: The case of the Wonji Shoa sugarcane plantation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przestrzenne zróżnicowanie i dynamika pH gleby oraz zawartości węgla organicznego i materii organicznej: Przykład plantacji trzciny cukrowej Wonji Shoa
Języki publikacji
EN
Abstrakty
EN
This study presents the spatial variability and dynamics of soil organic carbon (SOC), soil organic matter (SOM) and soil pH contents at the Wonji Shoa Sugar Estate (WSSE), Ethiopia. Soil samples were collected immediately after the sugarcane was harvested and then analysed for SOC, SOM and pH content using standard procedures. The analysis results showed that the pH value varied between 6.7–8.4 (neutral to moderately alkaline) and 7.3–8.5 (neutral to strongly alkaline) for the top and bottom soil profiles, respectively. The SOM content is in the range of 1.1–6.7% and 0.74–3.3% for the upper and lower soil layers, respectively. Nearly 45% of the samples demonstrated a SOM content below the desirable threshold (<2.1%) in the bottom layer and, hence, inadequate. Moreover, most of the topsoil layer (95%) has an SOM content exceeding the desirable limit and hence is categorized within the normal range. Interestingly, the SOC content showed a spatial variability in both the surface and sub-surface soil layers. A lower SOC and SOM content was found for the sub-soil in the south and southwestern part of the plantation. A further decline in the SOC and SOM content may face the estate if the current waterlogging condition continues in the future for a long period. Overall, the study result emphasizes the need to minimize the pre-harvest burning of sugarcane and action is needed to change the irrigation method to green harvesting to facilitate the SOC retention in the soil and minimize the greenhouse emission effect on the environment, hence improving soil quality in the long-term.
PL
W pracy przedstawiono przestrzenną zmienność i dynamikę węgla organicznego w glebie (SOC), materii organicznej (SOM) i pH na plantacji Wonji Shoa Sugar Estate (WSSE) w Etiopii. Próbki gleby były pobierane bezpośrednio po zbiorze trzciny cukrowej. Analizowano w nich wymienione wyżej składniki według standardowych procedur. Wartość pH zmieniała się od 6,7 do 8,4 w powierzchniowej warstwie gleby i od 7,3 do 8,5 w głębi profilu glebowego. Zawartość materii organicznej wynosiła od 1,1 do 6,7% w górnej i od 0,74 do 3,3% w dolnej warstwie gleby. Około 45% próbek zawierało materię organiczną w ilościach mniejszych niż pożądana (2,1%) w głębszych warstwach gleby. Większość próbek powierzchniowych zawierała materię organiczną w ilościach przekraczających tę granicę, co klasyfikuje te gleby jako normalne. Co ciekawe, zawartość węgla organicznego cechowała zmienność przestrzenna zarówno w powierzchniowych, jak i podpowierzchniowych warstwach gleby. Mniejszą zawartość materii organicznej i węgla organicznego stwierdzono w podpowierzchniowych warstwach gleby z południowej i południowozachodniej części plantacji. Gleby na plantacji mogą doświadczać dalszego spadku zawartości SOC i SOM, jeśli obecne wysycenie gleby wodą będzie występowało w przyszłości. Podsumowując, wyniki badań wskazują na potrzebę minimalizowania opalania trzciny cukrowej przed zbiorem oraz podejmowania działań zmierzających do zmiany metod nawadniania, aby usprawnić retencję węgla organicznego w glebie i łagodzić środowiskowe skutki emisji gazów cieplarnianych, a przez to polepszyć jakość gleb w dłuższej perspektywie czasowej.
Wydawca
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, APK Campus, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
  • Haramaya University, Department of Hydraulic and Water Resource Engineering, Institute of Technology, Dire Dawa, Ethiopia, University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, Johannesburg, South Africa
Bibliografia
  • ALBA S.D. 2003. Simulating long-term soil redistribution generated by different patterns of mouldboard ploughing in landscapes of complex topography. Soil and Tillage Research. Vol. 71 p. 71–86.
  • ANAYA C.A., HUBER-SANNWALD E. 2015. Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil and Tillage Research. Vol. 147 p. 20–29.
  • ASMAMAW M., HAILE A., ABERA G. 2018. Characterization and classification of salt affected soils and irrigation water in Tendaho sugarcane production farm, North-Eastern Rift Valley of Ethiopia. African Journal of Agricultural Research. Vol. 13. Iss. 9 p. 403–411.
  • BALDRIAN P., MERHAUTOVÁ V., CAJTHAML T., PETRÁNKOVÁ M., ŠNAJDR J. 2010. Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biology and Fertility Soils. Vol. 46. Iss. 7 p. 717–726.
  • BELACHEW T., ABERA Y. 2011. Effects of land use on soil organic carbon and nitrogen in soils of Bale, southeastern Ethiopia. Tropical and Subtropical Agroecosystems. Vol. 14 p. 229–235.
  • BENBI D.K., BRAR K., TOOR A. S., SINGH P. 2015. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma. Vol. 237 p. 149–158.
  • BEZA S.A., ASSEN M.A. 2016. Soil carbon and nitrogen changes under a long period of sugarcane monoculture in the semiarid East African Rift Valley, Ethiopia. Journal of Arid Environments. Vol. 132 p. 34–41.
  • BLAIR N. 2000. Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia. Soil and Tillage Research. Vol. 55. Iss. 3–4 p. 183–191.
  • BORDONAL D.O.R., LAL R., RONQUIM C.C., DE FIGUEIREDO E.B., CARVALHO J.N.S. et al. 2017. Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems and Environment. Vol. 240 p. 54–65.
  • BOT A., BENITES J. 2005. The importance of soil organic matter: Key to drought-resistant soil and sustained food production. FAO Soils Bulletin. No. 80. ISBN 92-5-105366-9 pp. 78.
  • BRANDANI C.B., ABBRUZZINI T.F., CONANT R.T., CERRI C.E.P. 2017. Soil organic and organomineral fractions as indicators of the effects of land management in conventional and organic sugar cane systems. Soil Research. Vol. 55. Iss. 2 p. 145–161.
  • BRANDAO M., CANALS L.M., CLIFT R. 2011. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass and Bioenergy. Vol. 35. Iss. 6 p. 2323–2336.
  • DINKA M.O. 2010. Analyzing the extents of Basaka Lake expansion and soil and water quality status of Matahara irrigation scheme, Awash Basin (Ethiopia). PhD Thesis, Vienna. BOKU University pp. 241.
  • DINKA M.O., LOISKANDL J.M., NDAMBUKI J.M. 2013. Seasonal behaviour and spatial fluctuations of groundwater levels in long-term irrigated agriculture: The case of Wonji Shoa Sugar Estate (Ethiopia). Polish Journal of Environmental Studies. Vol. 22. Iss. 5 p. 1325–1334.
  • DINKA M.O., NDAMBUKI J.M. 2014. Identifying the potential causes of waterlogging in irrigated agriculture: the case of the wonji‐shoa sugar cane plantation (Ethiopia). Irrigation and Drainage. Vol. 63. Iss. 1 p. 80–92.
  • FAO 2006. Guidelines for soil description (4th ed.). Rome, Italy. Food and Agriculture Organisation. ISBN 92-5-105521-1 pp. 97.
  • FIENER P., DLUGOB V., KORRES W., SCHNEIDER K. 2012. Spatial variability of soil respiration in a small agricultural watershed – Are patterns of soil redistribution important? Catena. Vol. 94 p. 3–16.
  • FIREHUN Y., TAMADO T. 2006. Weed flora in the Rift Valley sugarcane plantations of Ethiopia as influenced by soil types and agronomic practises. Weed Biology and Management. Vol. 6. Iss. 3 p. 139–150.
  • GALDOS M.V., CERRI C.C., CERRI C.E.P., PAUSTIAN K., VAN ANTWERPEN R. 2009. Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Science Society of America Journal. Vol. 73. Iss. 3 p. 802–811.
  • GATTINGER A., MULLER A., HAENI M., SKINNER C., FLIESSBACH A., BUCHMANN, N., MÄDER P., STOLZE M., SMITH P.N., SCIALABBA N.E.H. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences of the United States of America. Vol. 109. Iss. 44 p. 18226–18231.
  • GREENLAND D.J., NYE P.H. 1959. Increases in the carbon and nitrogen contents of tropical soils under natural fallows. European Journal of Soil Science. Vol. 10. Iss. 2 p. 284–299.
  • GREENLAND D.J., SZABOLCS I. (ed.) 1994. Soil resilience and sustainable land use. Proceedings of a symposium held in Budapest, 28 Sept. to 2 Oct 1992, including the Second Workshop on the Ecological Foundations of Sustainable Agriculture (WEFSA II). Wallingford, Oxfordshire. CAB International. ISBN 0-85198-871-7 pp. 576.
  • HE L.L., ZHONG Z.K., YANG H.M. 2017. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of Integrative Agriculture. Vol. 16. Iss. 3 p. 704–712.
  • HUNTINGTON T.G. 2008. CO2‐induced suppression of transpiration cannot explain increasing runoff. Hydrological Processes: An International Journal. Vol. 22. Iss. 2 p. 311–314.
  • KARLEN D.L., CAMBARDELLA C.A., KOVAR, J.L., COLVIN T.S. 2013. Soil quality response to long-term tillage and crop rotation practices. Soil and Tillage Research. Vol. 133 p. 54–64.
  • KELLOGG C.E. 1993. Soil survey division staff: Soil survey manual. Soil Science Division Staff. United States Department of Agriculture. Handbook 18 pp. 603.
  • LIANG Y.C., MA T.S., LI F.J., FENG Y.J. 1994. Silicon availability and response of rice and wheat to silicon in calcareous soils. Communications in Soil Science and Plant Analysis. Vol. 25. Iss. 13–14 p. 2285–2297.
  • MARZAIOLI R., D’ASCOLI R., DE PASCALE R.A., RUTIGLIANO F.A. 2010. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Applied Soil Ecology. Vol. 44. Iss. 3 p. 205–212.
  • NACHIMUTHU G., HULUGALLE N. 2016. On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: A review of empirical research. International Soil and Water Conservation Research. Vol. 4. Iss. 4 p. 245–259.
  • PAUSTIAN K., COLLINS H.P., PAUL E.A. 1997. Management controls on soil carbon. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America. Eds. E.A. Paul, E.T. Elliot, K. Paustian, C.V. Cole. Boca Raton, FL, USA. CRC Press p. 15–49
  • PERIE C., OUIMET R. 2008. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science. Vol. 88. Iss. 3 p. 315–325.
  • POST W.M., MANN L.K. 1990. Changes in soil organic carbon and nitrogen as a result of cultivation. In: Soils and the greenhouse effect. Ed. A.F. Bouwman. John Wiley and Sons p. 401–406.
  • RACHID C.T.C.C., SANTOS A.L., PICCOLO M.C., BALIEIRO F.C., COUTINHO H.L.C., PEIXOTO R.S., TIEDJE J.M., ROSADO A.S. 2013. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PloS ONE. Vol. 8(3) e59342. DOI 10.1371/journal.pone.0059342.
  • RAIESI F., RIAHI M. 2014. The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands. Ecological Indicators. Vol. 41 p. 145–154.
  • SARAH P. 2006. Soil organic matter and land degradation in semiarid area, Israel. Catena. Vol. 67. Iss. 1 p. 50–55.
  • SELIM H.M., NEWMAN A., ZHANG L., ARCENEAUX A., TUBAÑA B., GASTON L.A. 2016. Distributions of organic carbon and related parameters in a Louisiana sugarcane soil. Soil and Tillage Research. Vol. 55 p. 401–411.
  • SHENG H., ZHOU P., ZHANG Y., KUZYAKOV Y., ZHOU Q., GE T., WANG C. 2015. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry. Vol. 88 p. 148–157.
  • SHI B., JIN G. 2016. Variability of soil respiration at different spatial scales in temperate forests. Biology and Fertility of Soils. Vol. 52. Iss. 4 p. 561–571.
  • SILVA A.J.N., RIBEIRO M.R., CARVALHO F.G., SILVA V.N., SILVA L.E.S.F. 2007. Impact of sugarcane cultivation on soil carbon fractions, consistence limits and aggregate stability of a Yellow Latosol in Northeast Brazil. Soil and Tillage Research. Vol. 94. Iss. 2 p. 420–424.
  • SILVA-OLAYA A.M., FRAZÃO L.A., MELLO F.F.C. 2014. Sugarcane crop management in Brazil: impact on soil organic carbon dynamics. In: Production, consumption and agricultural management systems. Ed. E. Webb. New York. Nova Science Publishers, Inc. p. 35–60.
  • SOUZA R.A., TELLES T.S., MACHADO W., HUNGRIA M., FILHO J.T., GUIMARÃES M.F. 2012. Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agriculture, Ecosystems and Environment. Vol. 155 p. 1–6.
  • SPAIN A.V., ISBELL R.F., PROBERT M.E. 1983. Aspects of the chemistry of soil organic matter. In: Soils: An Australian viewpoint. Melbourne. CSIRO p. 551–563.
  • STOCKMANN U., ADAMS M.A., CRAWFORD J.W., FIELD D.J., HENAKAARCHCHI N., JENKINS M., MINASNY B., MCBRATNEY A.B., COURCELLES V.R., SINGH K., WHEELER I., ABBOTT L., ANGERS D.A., BALDOCK J., BIRD M., BROOKES P.C., CHENU C., JASTROW J.D., LAL R., LEHMANN J., O’DONNELL A.G., PARTON W.J., WHITEHEAD D., ZIMMERMANN M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment. Vol. 164 p. 80–99.
  • TIAN J., MCCORMACK L., WANG J., GUO D., WANG Q., ZHANG X., YU G., BLAGODATSKAYA E., KUZYAKOV Y. 2015. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. European Journal of Soil Biology. Vol. 66 p. 57–64.
  • USDA 1995–96. Agricultural statistics 1995–96. Washington, DC. United States Department of Agriculture, National Agricultural Statistics Service pp. 506.
  • WU M., HAN X., ZHONG T., YUAN M., WU W. 2016. Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems and Environment. Vol. 223 p. 59–66.
  • XIAO C. 2015. Soil organic carbon storage (sequestration) principles and management. Potential role for recycled organic materials in agricultural soils of Washington State. No. 15-07- 005. Olympia, Washington. Ecology State of Washington pp. 90.
  • YADAV R., SUMAN A., PRASAD S., PRAKASH O. 2009. Effect of Gluconacetobacter diazotrophicus and Trichoderma viride on soil health, yield and N-economy of sugarcane cultivation under subtropical climatic conditions of India. European Journal of Soil Science. Vol. 30. Iss. 4 p. 296–303.
  • YIHENEW G. 2002. Selected chemical and physical characteristics of soils of Adet research center and its testing sites in northwestern Ethiopia. Ethiopian Journal of Natural Resources. Vol. 4. Iss. 2 p. 199–215.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4fb8d30-50df-4f16-94d1-4909b0e4a66a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.