PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructure evolution after thermo-mechanical treatment of X11MnSiAl25-1-3 TWIP-type steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The purpose of the article is to present the results of research of the effect of thermal and thermoplastic working on the structure of high-manganese austenitic TWIP steels. Design/methodology/approach: Plastometric tests were performed with DSI (Dynamic System Inc.) Gleeble 3800 instrumentation being the equipment of the Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies of the Institute of Engineering Materials and Biomaterials. Changes in the microstructure after individual stages of hot plastic deformation were determined on the basis of detailed microstructure tests with the light microscope and scanning electron microscope. An X-ray phase qualitative analysis of the examined materials in the condition after casting and after thermoplastic working was carried out with the XPert diffractometer by Philips. Findings: It was concluded based on the tests performed that the structure of the examined austenitic high-manganese steel in the initial condition is represented by austenite with numerous annealing twins. The results obtained for investigations in a continuous compression test will enable to establish power and energy parameters and design a hot compression process, consisting of several phases, of axisymmetric specimens, simulating the final rolling passes. Practical implications: By elaborating the detailed data concerning structural changes and power and energy parameters of the thermoplastic working process of the investigated high-manganese austenitic TWIP steel type, it will be possible to design appropriately the final passes of the hot rolling process to obtain an optimum size of grains, which will in turn influence the improved strength properties of the investigated high-manganese austenitic X11MnSiAl25-1-3 steel. Originality/value: The application of thermoplastic working of high-manganese austenitic TWIP steel.
Rocznik
Strony
14--21
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Faculty of Mechanical Engineering,Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering,Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering,Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering,Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Chiaberge, New trends and developments in automotive system engineering, InTech, Turin, 2011.
  • [2] http://www.euroncap.com.
  • [3] http://www.nhtsa.gov.
  • [4] L. Chen, Y. Zhao, X. Qin, Some aspects of high manganese twinning-induced plasticity (TWIP) steel, Acta Metallurgica Sinica 26 (2013) 1-15.
  • [5] H.K.D.H. Bhadeshia, R.W.K. Haneycombe, Steels, Butterworth-Heinemann, Oxford, 2006.
  • [6] Y.K. Lee, C.S. Choi, Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system, Metallurgical and Materials Transactions A 31 (2000) 355.
  • [7] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer: High strength Fe-Mn-(Al,Si)TRIP/TWIP steels development - properties - application, International Journal of plasticity, 16 (2000) 1391-1409.
  • [8] R. Pla-Ferrando S. Sánchez-Caballero, M.A. Selles, A.V. Martínez-Sanz, Twip/Trip steels. Future trends in automotive industries, Annals of the Oradea University, Fascicle of Management and Technological Engineering 10 (2011) 1.23-1.26.
  • [9] G. Frommeyer, U. Brüx, P.Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, Iron and Steel Institute of Japan International 43 (2003) 438-446.
  • [10] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [11] Z. Gronostajski, A. Niechajowicz, S. Polak, Prospects for the use of new-generation steels of the ahss type for collision energy absorbing components, Current Opinion in Solid State and Materials Science 15 (2011) 141-168.
  • [12] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8/4 (2008) 29-38.
  • [13] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [14] L.A. Dobrzański, W. Borek, Processes forming the microstructure evolution of high-manganese austenitic steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 355-407.
  • [15] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.
  • [16] L.A. Dobrzański, W. Borek, Hot-working of advanced high-manganese austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507-526.
  • [17] L.A. Dobrzański, W. Borek, Hot-rolling of high-manganese Fe - Mn - (Al, Si) TWIP steels, Proceedings of 8th International Conference „Industrial Tools and Material Processing Technologies” ICIT&MPT’2011, Slovenia, 2011, 117-120.
  • [18] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706/709 (2012) 2053-2058.
  • [19] N. Cabanas, N. Akdut, J. Penning, B.C. De Cooman, High-temperature deformation properties of austenitic Fe-Mn alloys, Metallurgical and Materials Transactions A 37 (2006) 3305-3315.
  • [20] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [21] K.T. Park, K.G. Jin, S. Ho Han, S. Woo Hwang, K. Choi, C. Soo Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Materials Science and Engineering A 527 (2010) 3651-3661.
  • [22] G. Dini, A. Najazadeh, R. Ueji, S.M. Monir-Vaghe, Tensile deformation behavior of high manganese austenitic steel, The role of grain size, Materials and Design 31 (2010) 3395-3402.
  • [23] A. Weidner, S. Martin, V. Klemm, U. Martin, H. Biermann, Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging, Scripta Materialia 64 (2011) 513-516.
  • [24] L.A. Dobrzański, W Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12/3 (2012) 299-304.
  • [25] L.A. Dobrzański, A Grajcar, W Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.
  • [26] L.A. Dobrzański, W Borek, Microstructure forming processes of the 26Mn-3Si-3Al-Nb-Ti steel during hot-working conditions. Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 25-32.
  • [27] L.A. Dobrzański, W Borek, Mechanical properties and microstructure of high-manganese TWIP, TRIP and TRIPLEX type steels, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 230-238.
  • [28] L.A. Dobrzański, W Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4faac46-defc-4c50-9b20-284a77a5aa74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.