PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maximum power point tracking techniques for low-cost solar photovoltaic applications – Part II: Mathematical Calculation and Measurement and Comparison, criteria on choices and suitable MPPT techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last decade, there has been a substantial surge in the advancement of research into the maximum power point tracking (MPPT) controller. The MPPT approaches, on the other hand, continue to be in high demand due to the ease and simplicity with which tracking techniques can be implemented on the maximum power point (MPP). Diverse MPPT approaches and their modifications from various literature are categorized and thoroughly explored in this work, which is divided into two sections. The discussions are centered on the primary goal of attaining the most extraordinary feasible MPPT technique that produces the best results at the lowest possible expense. In order to determine which MPPT approaches to use, evaluations from earlier literature are used to guide the decision. In this section, we will examine the evaluation of the MPPT technique in two sections. Previously, in Part I, we explored the MPPT techniques based on constant parameters and trial-and- error. Part II of this article will examine the MPPT technique, which is based on mathematical computation, measurement, and comparison, and the algorithm development that has occurred in recent years. Furthermore, this section’s assessment for selecting MPPT approaches is based on previous literature reviews. To aid with this selection, the following criteria for the MPPT approach are proposed: sensors and analog/digital requirements, costeffectiveness, simplicity, stability, efficiency, and tracking speed. This enables the reader to select the MPPT technique that is most appropriate for their application.
Rocznik
Strony
299--322
Opis fizyczny
Bibliogr. 77 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical Engineering, Universitas Ahmad Dahlan Yogyakarta, Indonesia
  • Department of Electrical Engineering, Universitas Ahmad Dahlan Yogyakarta, Indonesia
autor
  • Faculty of Engineering and Architecture, Kore University of Enna Italy
autor
  • School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Johor Bahru, Malaysia
  • Capital University of Science & Technology Islamabad, Pakistan
Bibliografia
  • 1] Ram J. P., Babu T. S., Rajasekar N., A comprehensive review on solar PV maximum power point tracking techniques, Renewable and Sustainable Energy Reviews, vol. 67, pp. 826–847 (2017), DOI: 10.1016/j.rser.2016.09.076.
  • [2] Pallavee Bhatnagar A., Nema B. R. K., Conventional and global maximum power point tracking techniques in photovoltaic applications: A review, Journal of Renewable and Sustainable Energy, vol. 5, no. 3, p. 32701 (2013), DOI: 10.1063/1.4803524.
  • [3] Sutikno T., Subrata A. C., Elkhateb A., Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System, IEEE Access, p. 1 (2021), DOI: 10.1109/AC-CESS.2021.3102050.
  • [4] Hafiz A. M., Abdelrahman M. E., Temraz H., Economic dispatch in power system networks including renewable energy resources using various optimization techniques, Archives of Electrical Engineering, vol. 70, no. 3, pp. 643–655 (2021), DOI: 10.24425/aee.2021.137579.
  • [5] Solangi K. H., Islam M. R., Saidur R., Rahim N. A., Fayaz H., A review on global solar energy policy, Renewable and sustainable energy reviews, vol. 15, no. 4, pp. 2149–2163 (2011), DOI: 10.1016/j.rser.2011.01.007.
  • [6] Tsoutsos T., Frantzeskaki N., Gekas V., Environmental impacts from the solar energy technologies, Energy policy, vol. 33, no. 3, pp. 289–296 (2005), DOI: 10.1016/S0301-4215(03)00241-6.
  • [7] Wang Q., Qiu H.-N., Situation and outlook of solar energy utilization in Tibet, China, Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2181–2186 (2009), DOI: 10.1016/j.rser.2009.03.011.
  • [8] Saidur R., Islam M. R., Rahim N.A., Solangi K.H., A review on global wind energy policy, Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1744–1762 (2010), DOI: 10.1016/j.rser.2010.03.007.
  • [9] Liserre M., Sauter T., Hung J.Y., Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics, IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 18–37 (2010), DOI: 10.1109/MIE.2010.935861.
  • [10] Mohapatra A., Nayak B., Das P., Mohanty K.B., A review on MPPT techniques of PV system under partial shading condition, Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867 (2017), DOI: 10.1016/j.rser.2017.05.083.
  • [11] Seyedmahmoudian M., Horan B., Soon T .K., Rahmani R., Than Oo A. M., Mekhilef S., Stojcevski A., State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review, Renewable and Sustainable Energy Reviews, vol. 64, pp. 435–455 (2016), DOI: 10.1016/j.rser.2016.06.053.
  • [12] Yang B., Zhu T., Wang J., Shu H., Yu T., Zhang X., Yao W., Sun L., Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition, Journal of Cleaner Production, p. 121983 (2020), DOI: 10.1016/j.jclepro.2020.121983.
  • [13] Subudhi B., Pradhan R., A comparative study on maximum power point tracking techniques for photovoltaic power systems, IEEE transactions on Sustainable Energy, vol. 4, no. 1, pp. 89–98 (2012), DOI: 10.1109/TSTE.2012.2202294.
  • [14] Salam Z., Ahmed J., Merugu B. S., The application of soft computing methods for MPPT of PV system: A technological and status review, Applied Energy, vol. 107, pp. 135–148 (2013), DOI: 10.1016/ j.apenergy.2013.02.008.
  • [15] Seddjar A., Kerrouche K. D. E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.
  • [16] Verma D., Nema S., Shandilya A. M., Dash S. K., Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 54, pp. 1018–1034 (2016), DOI: 10.1016/j.rser.2015.10.068.
  • [17] Esram T., Chapman P. L., Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on energy conversion, vol. 22, no. 2, pp. 439–449 (2007), DOI: 10.1109/TEC.2006.874230.
  • [18] Ali A. N. A., Saied M. H., Mostafa M.Z., Abdel-Moneim T.M., A survey of maximum PPT techniques of PV systems, in 2012 IEEE Energytechpp, 1–17 (2012), DOI: 10.1109/EnergyTech.2012.6304652.
  • [19] Kamarzaman N.A., Tan C.W., A comprehensive review of maximum power point tracking algorithms for photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 37, pp. 585–598 (2014), DOI: 10.1016/j.rser.2014.05.045.
  • [20] Bendib B., Belmili H., Krim F., A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 45, pp. 637–648 (2015), DOI: 10.1016/j.rser.2015.02.009.
  • [21] Gupta A., Chauhan Y. K., Pachauri R.K., A comparative investigation of maximum power point tracking methods for solar PV system, Solar energy, vol. 136, pp. 236–253 (2016), DOI: 10.1016/j.solener.2016.07.001.
  • [22] Podder A. K., Roy N. K., Pota H. R., MPPT methods for solar PV systems: a critical review based on tracking nature, IET Renewable Power Generation, vol. 13, no. 10, pp. 1615–1632 (2019), DOI: 10.1049/iet-rpg.2018.5946.
  • [23] Tajuddin M. F. N., Arif M. S., Ayob S. M., Salam Z., Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review, International Journal of Energy Research, vol. 39, no. 9, pp. 1153–1178 (2015), DOI: 10.1049/iet-rpg.2019.1163.
  • [24] Danandeh M.A., Mousavi G.S.M., Comparative and comprehensive review of maximum power point tracking methods for PV cells, Renewable and Sustainable Energy Reviews, vol. 82, pp. 2743–2767 (2018), DOI: 10.1016/j.rser.2017.10.009.
  • [25] Bollipo R. B., Mikkili S., Bonthagorla P. K., Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation, IET Renewable Power Generation, vol. 14, no. 9, pp. 1433–1452 (2020), DOI: 10.1049/iet-rpg.2019.1163.
  • [26] Karami N., Moubayed N., Outbib R., General review and classification of different MPPT Techniques, Renewable and Sustainable Energy Reviews, vol. 68, pp. 1–18 (2017), DOI: 10.1016/j.rser.2016.09.132.
  • [27] Mao M., Cui L., Zhang Q., Guo K., Zhou L., Huang H., Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies, Energy Reports, vol. 6, pp. 1312–1327 (2020), DOI: 10.1016/j.egyr.2020.05.013.
  • [28] Motahhir S., El Hammoumi A., El Ghzizal A., The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm, Journal of Cleaner Production, vol. 246, p. 118983 (2020), DOI: 10.1016/j.jclepro.2019.118983.
  • [29] Sutikno T., Subrata A.C., Pau G., Jusoh A., Ishaque K., Maximum power point tracking techniques for low-cost solar photovoltaic applications – Part I: constant parameters and trial-and-error, Archives of Electrical Engineering, vol. 72, no. 1, pp. 125–145 (2023), DOI: 10.24425/aee.2023.143693.
  • [30] Hsieh G.-C., Hsieh H.-I., Tsai C.-Y., Wang C.-H., Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2895–2911 (2012), DOI: 10.1109/TPEL.2012.2227279.
  • [31] Safari A., Mekhilef S., Implementation of incremental conductance method with direct control, in TENCON 2011-2011 IEEE Region 10 Conference, pp. 944–948 (2011), DOI: 10.1109/TEN-CON.2011.6129249.
  • [32] Sivakumar P., Kader A.A., Kaliavaradhan Y., Arutchelvi M., Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions, Renewable Energy, vol. 81, pp. 543-550 (2015), DOI: 10.1016/j.renene.2015.03.062.
  • [33] Liu X., Lopes L. A. C., An improved perturbation and observation maximum power point tracking algorithm for PV arrays, in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), vol. 3, pp. 2005–2010 (2004), DOI: 10.1109/PESC.2004.1355425.
  • [34] Hohm D. P., Ropp M. E., Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036), pp. 1699–1702 (2000), DOI: 10.1109/PVSC.2000.916230.
  • [35] Safari A., Mekhilef S., Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter, IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1154–1161 (2010), DOI: 10.1109/TIE.2010.2048834.
  • [36] Hussein K. H., Muta I., Hoshino T., Osakada M., Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions, IEE Proceedings-Generation, Transmission and Distribution, vol. 142, no. 1, pp. 59-64 (1995), DOI: 10.1049/ip-gtd:19951577.
  • [37] Loukriz A., Haddadi M., Messalti S., Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems, ISA transactions, vol. 62, pp. 30–38 (2016), DOI: 10.1016/j.isatra.2015.08.006.
  • [38] Tey K. S., Mekhilef S., Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level, Solar Energy, vol. 101, pp. 333–342 (2014), DOI: 10.1016/j.solener.2014.01.003.
  • [39] Lee J. H., Bae H., Cho B. H., Advanced incremental conductance MPPT algorithm with a variable step size, in 2006 12th International Power Electronics and Motion Control Conferencepp, pp. 603–607 (2006), DOI: 10.1109/EPEPEMC.2006.4778466.
  • [40] Yousri D., Babu T.S., Allam D., Ramachandaramurthy V.K., Etiba M.B., A Novel Chaotic Flower Pollination Algorithm for Global Maximum Power Point Tracking for Photovoltaic System Under Partial Shading Conditions, IEEE Access, vol. 7, pp. 121432–121445 (2019), DOI: 10.1109/AC-CESS.2019.2937600.
  • [41] Mei Q., Shan M., Liu L., Guerrero J.M., A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems, IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2427–2434 (2011), DOI: 10.1109/TIE.2010.2064275.
  • [42] Zakzouk N. E., Elsaharty M. A., Abdelsalam A.K., Helal A.A., Williams B.W., Improved performance low-cost incremental conductance PV MPPT technique, IET Renewable Power Generation, vol. 10, no. 4, pp. 561–574 (2016), DOI: 10.1049/iet-rpg.2015.0203.
  • [43] Xiao W., Dunford W. G., Palmer P. R., Capel A., Application of centered differentiation and steepest descent to maximum power point tracking, IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2539–2549 (2007), DOI: 10.1109/TIE.2007.899922.
  • [44] Tsang K.M., Chan W. L., Maximum power point tracking for PV systems under partial shading conditions using current sweeping, Energy Conversion and Management, vol. 93, pp. 249–258 (2015), DOI: 10.1016/j.enconman.2015.01.029.
  • [45] Park H.-E., Song J.-H., A dP/dV feedback-controlled MPPT method for photovoltaic power system using II-SEPIC, Journal of Power Electronics, vol. 9, no. 4, pp. 604–611 (2009).
  • [46] Wu T.-H., Liu W.-C., Moo C.-S., Cheng H.-L., Chang Y.-N., An electric circuit model of photovoltaic panel with power electronic converter, in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6 (2016), DOI: 10.1109/COMPEL.2016.7556672.
  • [47] Li X., Wen H., Hu Y., Jiang L., Xiao W., Modified beta algorithm for GMPPT and partial shading detection in photovoltaic systems, IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2172–2186 (2017), DOI: 10.1109/TPEL.2017.2697459.
  • [48] Abe C. F., Dias J. B., Notton G., Poggi P., Computing Solar Irradiance and Average Temperature of Photovoltaic Modules From the Maximum Power Point Coordinates, IEEE Journal of Photovoltaics, vol. 10, no. 2, pp. 655–663 (2020), DOI: 10.1109/JPHOTOV.2020.2966362.
  • [49] Kimball J. W., Krein P. T., Digital ripple correlation control for photovoltaic applications, in 2007 IEEE Power Electronics Specialists Conference, pp. 1690–1694 (2007), DOI: 10.1109/PESC.2007.4342252.
  • [50] Kimball J. W., Krein P. T., Discrete-time ripple correlation control for maximum power point tracking, IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2353–2362 (2008), DOI: 10.1109/TPEL.2008.2001913.
  • [51] Lim Y. H., Hamill D. C., Simple maximum power point tracker for photovoltaic arrays, Electronics letters, vol. 36, no. 11, pp. 997–999 (2000), DOI: 10.1049/el:20000730.
  • [52] Lim Y. H., Hamill D. C., Synthesis, simulation and experimental verification of a maximum power point tracker from nonlinear dynamics, in 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), vol. 1, pp. 199–204 ( 001), DOI: 10.1109/PESC.2001.954019.
  • [53] Jung Y., Yu G., Choi J., Choi J., High-frequency DC link inverter for grid-connected photovoltaic system, in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002, pp. 1410–1413 (2002), DOI: 10.1109/PVSC.2002.1190873.
  • [54] Mäki A., Valkealahti S., Differentiation of multiple maximum power points of partially shaded photovoltaic power generators, Renewable Energy, vol. 71, pp. 89–99 (2014), DOI: 10.1016/j.renene.2014.05.018.
  • [55] Noguchi T., Matsumoto H., Maximum power point tracking method of photovoltaic using only single current sensor, EPE2003, Toulouse, p. 8 (2003).
  • [56] Bodur M., Ermis M., Maximum power point tracking for low power photovoltaic solar panels, in Proceedings of MELECON’94 Mediterranean Electrotechnical Conference, pp. 758–761 (1994), DOI: 10.1109/MELCON.1994.380992.
  • [57] Sugimoto H., Dong H., A new scheme for maximum photovoltaic power tracking control, in Proceedings of Power Conversion Conference-PCC’97, vol. 2, pp. 691–696 (1997), DOI: 10.1109/PC-CON.1997.638281.
  • [58] López-Lapeńa O., Penella M.T., Gasulla M., A new MPPT method for low-power solar energy harvesting, IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3129–3138 (2009), DOI: 10.1109/TIE.2009.2037653.
  • [59] Tafticht T., Agbossou K., Development of a MPPT method for photovoltaic systems, in Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513), vol. 2, pp. 1123–1126 (2004), DOI: 10.1109/CCECE.2004.1345317.
  • [60] Brambilla A., Gambarara M., Garutti A., Ronchi F., New approach to photovoltaic arrays maximum power point tracking, in 30th Annual IEEE Power Electronics Specialists Conference, Record (Cat. No. 99CH36321), vol. 2, pp. 632–637 (1999), DOI: 10.1109/PESC.1999.785575.
  • [61] Pongratananukul N., Analysis and simulation tools for solar array power systems (2005).
  • [62] Hohm D. P., Ropp M. E., Comparative study of maximum power point tracking algorithms, Progress in Photovoltaics: Research and Applications, vol. 11, no. 1, pp. 47–62 (2003), DOI: 10.1002/pip.459.
  • [63] Jain S., Agarwal V., A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems, IEEE power electronics letters, vol. 2, no. 1, pp. 16–19 (2004), DOI: 10.1109/LPEL.2004.828444.
  • [64] Takashima T., Tanaka T., Amano M., Ando Y., Maximum output control of photovoltaic (PV) array, in Collection of Technical Papers, 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC), (Cat. No. 00CH37022), vol. 1, pp. 380–383 (2000), DOI: 10.1109/IECEC.2000.870713.
  • [65] Esram T., Kimball J.W., Krein P.T., Chapman P.L., Midya P., Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control, IEEE Transactions on power electronics, vol. 21, no. 5, pp. 1282–1291 (2006), DOI: 10.1109/TPEL.2006.880242.
  • [66] Midya P., Krein P. T., Turnbull R.J., Reppa R., Kimball J., Dynamic maximum power point tracker for photovoltaic applications, in PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp. 1710–1716 (1996), DOI: 10.1109/PESC.1996.548811.
  • [67] Malathy S., Ramaprabha R., Maximum power point tracking based on look up table approach, in Advanced Materials Research, vol. 768, pp. 124–130 (2013), DOI: 10.4028/www.scientific.net/AMR.768.124.
  • [68] Sun H., Du H., Ji Y., Yang B., Photovoltaic distributed MPPT mechanism analysis and simulation study, Power System Protection and Control, vol. 43, no. 2, pp. 48–54 (2015).
  • [69] Kim Y., Jo H., Kim D., A new peak power tracker for cost-effective photovoltaic power system, in IECEC 96 Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, vol. 3, pp. 1673–1678 (1996), DOI: 10.1109/IECEC.1996.553353.
  • [70] Jin S., Zhang D., Wang C., UI-RI hybrid lookup table method with high linearity and high-speed convergence performance for FPGA-based space solar array simulator, IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7178–7192 (2017), DOI: 10.1109/TPEL.2017.2757038.
  • [71] Chen Y., Smedley K., Vacher F., Brouwer J., A new maximum power point tracking controller for photovoltaic power generation, in Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003, APEC’03, vol. 1, pp. 58–62 (2003), DOI: 10.1109/APEC.2003.1179176.
  • [72] Jin S., Zhang D., Wang C., UI-RI hybrid lookup table method with high linearity and high-speed convergence performance for FPGA-based space solar array simulator, IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7178–7192 (2017), DOI: 10.1109/TPEL.2017.2757038.
  • [73] Kislovski A. S., Redl R., Maximum-power-tracking using positive feedback, in Proceedings of 1994 Power Electronics Specialist Conference-PESC’94, vol. 2, pp. 1065–1068 (1994), DOI: 10.1109/PESC.1994.373812.
  • [74] Shmilovitz D., On the control of photovoltaic maximum power point tracker via output parameters, IEE Proceedings-Electric Power Applications, vol. 152, no. 2, pp. 239–248 (2005), DOI: 10.1049/ipepa:20040978.
  • [75] Arias J., Linera F.F., Martin-Ramos J., Pernia A.M., Cambronero J., A modular PV regulator based on microcontroller with maximum power point tracking, in Conference Record of the 2004 IEEE Industry Applications Conference, 2004, 39th IAS Annual Meeting, vol. 2, pp. 1178–1184 (2004), DOI: 10.1109/IAS.2004.1348562.
  • [76] Salas V., Olias E., Lazaro A., Barrado A., New algorithm using only one variable measurement applied to a maximum power point tracker, Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 675–684 (2005), DOI: 10.1016/j.solmat.2004.09.019.
  • [77] Kumar V., Ghosh S., Naidu N. K. S., Kamal S., Saket R. K., Nagar S. K., Load voltage-based MPPT technique for standalone PV systems using adaptive step, International Journal of Electrical Power and Energy Systems, vol. 128, p. 106732 (2021), DOI: 10.1016/j.ijepes.2020.106732.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4fa5b22-2a8a-414b-bbd0-fd2067a8a42b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.