PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of bubble-particle interaction in different flotation processes and applications - a review of recent studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation process involves aggregation of the particles based on the material/compound type of random mixtures such as ores and seawater. It is primarily used in pretreatment of water desalination and other industrial applications. The process makes use of various fluid mechanics principles as multifluids are involved. The multi-fluids in most of the flotation processes are of different phases, such as air and water. Like any other process, the efficiency of flotation is important, and hence most of the studies have been dedicated to understanding how the various parameters are affecting the flotation process. Among various parameters, fluids properties and flow parameters chiefly affect the flotation process. In particular, the bubble-particle interaction of the flotation process has been of interest as it is one of the cost-effective ways to enhance flotation efficiency. In this review, the authors present the latest developments in such parametric studies. This paper could be of interest to research students, academic researchers, and practitioners who want to contribute to (or take from) flotation research.
Rocznik
Strony
206--224
Opis fizyczny
Bibliogr. 41 poz., rys., wz.
Twórcy
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
Bibliografia
  • ALTAHER, H., EL-QADA, E., OMAR, W. 2012. Dispersed air flotation as a pretreatment process for seawater desalination. Water Science and Technology: Water Supply, 12(4), 431–438.
  • AMINI, E., BRADSHAW, D.J., FINCH, J.A., BRENNAN, M. 2013. Influence of turbulence kinetic energy on bubble size in different scale flotation cells. Minerals Engineering, 45, 146–150.
  • BASAROVA, P., HUBICKA, M. 2014. The collision efficiency of small bubbles with large particles. Minerals Engineering, 66, 230–233.
  • BRABCOVA, Z., KARAPANTSIOS, T., KOSTOGLOU, M., BASAROVA, P., MATIS, K. 2015. Bubble--particle collision interaction in flotation systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 473, 95–103.
  • CILEK, E.C., KARACA, S. 2015. Effect of nanoparticles on froth stability and bubble size distribution in flotation. International Journal of Mineral Processing, 138, 6–14.
  • DAI, Z., FORNASIERO, D., RALSTON, J. 2000. Particle--bubble collision models - a review. Advances in Colloid and Interface Science, 85(2–3), 231–256.
  • DE F. GOMTIJO, C., FORNASIERO, D., RALSTON, J. 2007. The limits of fine and coarse particle flotation. The Canadian Journal of Chemical Engineering, 85(5), 739–747.
  • EBRAHIMI, H., KARAMOOZIAN, M., SAGHRAVANI, S. F. 2020. Interaction of applying stable micro-nano bubbles and ultrasonic irradiation in coal flotation. International Journal of Coal Preparation and Utilization, 1–15.
  • ESKANLOU, A., KHALESI, M.R., MIRMOGADDAM, M., HEMMATI CHEGENI, M., VAZIRI HASSAS, B. 2019. Investigation of trajectory and rise velocity of loaded and bare single bubbles in flotation process using video processing technique. Separation Science and Technology, 54(11), 1795–1802.
  • HOSEINIAN, F. S., REZAI, B., SAFARI, M., DEGLON, D., KOWSARI, E. 2019. Effect of hydrodynamic parameters on nickel removal rate from wastewater by ion flotation. Journal of Environmental Management, 244, 408–414.
  • HUBICKA, M., BASAROVA, P., VEJRAZKA, J. 2013. Collision of a small rising bubble with a large falling particle. International Journal of Mineral Processing, 121, 21–30.
  • IRELAND, P.M., JAMESON, G.J. 2014. Collision of a rising bubble--particle aggregate with a gas-liquid interface. International Journal of Mineral Processing, 130, 1–7.
  • JAVOR, Z., SCHREITHOFER, N., HEISKANEN, K. 2015. Micro-and nano-scale phenomena effect on bubble size in mechanical flotation cell. Minerals Engineering, 70, 109–118.
  • KOH, P.T.L., HAO, F.P., SMITH, L. K., CHAU, T.T., BRUCKARD, W.J. 2009. The effect of particle shape and hydrophobicity in flotation. International Journal of Mineral Processing, 93(2), 128–134.
  • KOSIOR, D., KOWALCZUK, P.B., ZAWALA, J. 2018. Surface roughness in bubble attachment and flotation of highly hydrophobic solids in presence of frother--experiment and simulations. Physicochem. Probl. Miner. Process., 54(1), 63-72.
  • KOSIOR, D., ZAWALA, J., KRASOWSKA, M., MALYSA, K. 2013. Influence of n-octanol and $α$-terpineol on thin film stability and bubble attachment to hydrophobic surface. Physical Chemistry Chemical Physics, 15(7), 2586–2595.
  • KRASOWSKA, M., ZAWALA, J., MALYSA, K. 2009. Air at hydrophobic surfaces and kinetics of three phase contact formation. Advances in Colloid and Interface Science, 147, 155–169.
  • LEI, W., ZHANG, M., ZHANG, Z., ZHAN, N., FAN, R. 2020. Effect of bulk nanobubbles on the entrainment of kaolinite particles in flotation. Powder Technology, 362, 84–89.
  • LI, S., SCHWARTZ, M. P., YANG, W., FENG, Y., WITT, P., SUN, C. 2020. Experimental observations of bubble—particle collisional interaction relevant to froth flotation, and calculation of the associated forces. Minerals Engineering, 151, 106335.
  • MA, F., TAO, D., TAO, Y. (2019). Effects of nanobubbles in column flotation of Chinese sub-bituminous coal. International Journal of Coal Preparation and Utilization, 1–17.
  • MESA, D., BRITO-PARADA, P.R., Froth stability and flotation performance: the effect of impeller design modifications. Proceedings of Conference Flotation 2019, Cape Town, South Africa
  • MIETTINEN, T., RALSTON, J., FORNASIERO, D. 2010. The limits of fine particle flotation. Minerals Engineering, 23(5), 420–437.
  • NAZARI, S., SHAFAEI, S.Z., GHARABAGHI, M., AHMADI, R., SHAHBAZI, B., FAN, M. (2019). Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. International Journal of Mining Science and Technology, 29(2), 289–295.
  • NI, C., MA, G., XIA, W., PENG, Y., JIE, S., XIE, G. 2019. Influence of Inclined Plates in the Froth Zone on the Flotation Performance of a Flotation Column. International Journal of Coal Preparation and Utilization, 39(3), 132–144.
  • REAY, D., RATCLIFF, G.A. 1973. Removal of fine particles from water by dispersed air flotation: effects of bubble size and particle size on collection efficiency. The Canadian Journal of Chemical Engineering, 51(2), 178–185.
  • REN, L., ZENG, W., NGUYEN, A. V, MA, X. (2019). Effects of bubble size, velocity, and particle agglomeration on the electro-flotation kinetics of fine cassiterite. Asia-Pacific Journal of Chemical Engineering, 14(4), e2333.
  • SHAHBAZI, B., REZAI, B., KOLEINI, S. M. J. 2010. Bubble--particle collision and attachment probability on fine particles flotation. Chemical Engineering and Processing: Process Intensification, 49(6), 622–627.
  • SHU, K., XU, L., WU, H., FANG, S., WANG, Z., XU, Y., ZHANG, Z. 2019. Effects of ultrasonic pre-treatment on the flotation of ilmenite and collector adsorption. Minerals Engineering, 137, 124–132.
  • SOBHY, A., TAO, D. 2019. Effects of nanobubbles on froth stability in flotation column. International Journal of Coal Preparation and Utilization, 39(4), 183–198.
  • TABOSA, E., RUNGE, K., HOLTHAM, P. 2016. The effect of cell hydrodynamics on flotation performance. International Journal of Mineral Processing, 156, 99–107.
  • TAO, D. (2005). Role of bubble size in flotation of coarse and fine particles􀀀a review. Separation Science and Technology, 39(4), 741–760.
  • VERRELLI, D.I., BRUCKARD, W. J., KOH, P.T.L., SCHWARZ, M. P., FOLLINK, B. 2014. Particle shape effects in flotation. Part 1: Microscale experimental observations. Minerals Engineering, 58, 80–89.
  • WU, L., HAN, Y., ZHANG, Q., ZHAO, S. 2019. Effect of external electric field on nanobubbles at the surface of hydrophobic particles during air flotation. RSC Advances, 9(4), 1792–1798.
  • YOON, R.-H. 2000. The role of hydrodynamic and surface forces in bubble--particle interaction. International Journal of Mineral Processing, 58(1–4), 129–143.
  • ZHANG, Q., WEN, S., FENG, Q., ZHANG, S. 2020. Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism. Separation and Purification Technology, 116760.
  • ZHANG, W. 2014. Evaluation of effect of viscosity changes on bubble size in a mechanical flotation cell. Transactions of Nonferrous Metals Society of China, 24(9), 2964–2968.
  • ZHANG, W., NESSET, J. E., FINCH, J. A. 2014. Bubble size as a function of some situational variables in mechanical flotation machines. Journal of Central South University, 21(2), 720–727.
  • ZHAO, W., LIU, D., FENG, Q. 2020. Enhancement of salicylhydroxamic acid adsorption by Pb (II) modified hemimorphite surfaces and its effect on floatability. Minerals Engineering, 152, 106373.
  • ZHOU, W., LIU, K., WANG, L., ZHOU, B., NIU, J., OU, L. 2020. The role of bulk micro-nanobubbles in reagent desorption and potential implication in flotation separation of highly hydrophobized minerals. Ultrasonics Sonochemistry, 64, 104996.
  • ZHOU, W., WU, C., LV, H., ZHAO, B., LIU, K., OU, L. 2020. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation. Applied Surface Science, 145282.
  • ZHU, H., VALDIVIESO, A. L., ZHU, J., SONG, S., MIN, F., ARROYO, M.A.C. 2018. A study of bubble size evolution in Jameson flotation cell. Chemical Engineering Research and Design, 137, 461–466.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4ecb532-18ac-4bc7-bcb9-59f46c044c55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.