PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza i ocena możliwości zastosowania niektórych pochodnych chitozanu w przemyśle skórzanym. Część I, Przegląd literatury

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis and evaluation of the possibility of using selected chitosan derivatives in the leather industry. Part I, Literature review
Języki publikacji
PL
Abstrakty
PL
Wzrastające obawy użytkowników obuwia przed chorobami stóp stwarzają nowe wyzwania przemysłowi obuwniczemu. Dlatego poszukiwane są nieszkodliwe dla człowieka substancje antybakteryjne, które będą skutecznie działać po zaaplikowaniu na wyroby skórzane. Takimi substancjami mogą być kopolimery oparte o naturalny polisacharyd - chitozan i jego poliglikolowe pochodne. W pracy przedstawiono aktualny stan wiedzy w zakresie modyfikacji chitozanu, prowadzący do otrzymania kopolimerów, stwarzających możliwość zastosowań ich w przemyśle skórzanym.
EN
Increasing concerns of footwear users against foot diseases create new challenges for the footwear industry. Therefore, the antibacterial substances that will be effective after application to leather products and safe for human are still searched. Such substances may be copolymers based on natural polysaccharide - chitosan and its polyglycol derivatives. The paper presents the current state of knowledge in the field of chitosan modification leading to obtaining copolymers that may have potential applications in the leather industry.
Rocznik
Tom
Strony
105--118
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Instytut Przemysłu Skórzanego
  • Instytut Przemysłu Skórzanego
  • Instytut Przemysłu Skórzanego
Bibliografia
  • [1] Orlita A.: Microbial biodeterioration of leather and its control: A review, International Biodeterioration and Biodegradation, 53, 2004, str. 157 – 163.
  • [2] Ara K., Hama M., Akiba S., Koike K., Okisaka K., Hagura T., et al.: Foot odor due to microbial metabolism and its control, Canadian Journal of Microbiology, 52, 2006, str. 357 – 364.
  • [3] Jennings M. B., Alfieri D., Kosinski M., Weinberg J. M.: An investigator blind study of the efficacy and safety of azithromycin versus cefadroxil in the treatment of skin and skin structure infections of the foot, The Foot, 9, 1999, str. 68 – 72.
  • [4] Sánchez-Navarro M. M., Cuesta-Garrote N., Arán-Aís F., Orgilés-Barceló, C.: Microencapsulation of Melaleuca alternifolia (Tea Tree) oil as biocide for footwear applications, Journal of Dispersion Science and Technology, 32, 2011, str. 1722 – 1727.
  • [5] Johannesson A., Larsson G., Ramstrand N., Turkiewicz A., Wiréhn A., Atroshi I.: Incidence of lower-limb amputation in the diabetic and nondiabetic general population, Diabetes Care, 32, 2009, str. 275 – 280.
  • [6] Aksoy A., Kaplan S.: Production and performance analysis of an antibacterial foot sweat pad, Fibers and Polymers, 14, 2013, str. 316 – 323.
  • [7] Stockam G., Didato D. T., Hurlow E.: Antibiotics in hide preservation and bacterial control, Journal of the American Leather Chemists Association, 102, 2007, str. 62 – 67.
  • [8] Quanqing L., Haiqi G., Lihua P., Gongyan L., Zongcai Z.: Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather, Journal of Applied Polymer Science, 133, 2016, str. 1 – 7.
  • [9] Sirvaityté J., Siugzdaite J., Valeika V.: Application of commercial essential oils of eucalyptus and lavender as natural preservative for leather tanning industry, Revista de Chimie, 62, 2011, str. 884 – 893.
  • [10] Zhang M., Li X.H., Gong Y.D., Zhao N.M., Zhang X.F.: Properties and biocompatibility of chitosan films modified by blending with PEG, Biomaterials, 23, 2002, str. 2641 – 2648.
  • [11] Majeti N.V., Kumar R.: A review of chitin and chitosan applications, Reactive and Functional Polymers, 46, 2000, str. 1 – 27.
  • [12] Molinaro G., Leroux J.C., Damas J., Adam A.: Biocompatibility of thermosensitive chitosan-based hydrogels an in vivo experimental approach to injectable biomaterials, Biomaterials, 23, 2002, str. 2717 – 2722.
  • [13] Lu S., Gao W., Gu H.Y.: Construction, application and biosafety of silver nanocrystalline chitosan wound dressing, Burns, 34, 2008, str. 623 – 628.
  • [14] Yamaguchi I., Itoh S., Suzuki M., Sakane M., Osaka A., Tanaka J.: The chitosan prepared from crab tendon I: the characterization and the mechanical properties, Biomaterials, 24, 2003, str. 2031 – 2036.
  • [15] Muzzarelli R.A.: Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone, Carbohydrate Polymers, 76, 2009, str. 167 – 182.
  • [16] Kubiak T.: Wykorzystanie pokryć z poli(glikolu etylenowego) i chitozanu do zapewnienia biokompatybilności nanocząstkom w aplikacjach biomedycznych, Polymers in Medicine, 44 (2), 2014, str. 119 – 127.
  • [17] Mao S., Shuai X., Unger F., Wittmar M., Xie X., Kissel T.: Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers, Biomaterials, 26 (32), 2005, str. 6343 – 6356.
  • [18] Fernandes I. P., Amaral J. S., Pinto V., Ferreira M. J., Barreiro M. F.: Development of chitosan-based antimicrobial leather coatings, Carbohydrate Polymers, 98, 2013, str. 1229 – 1235.
  • [19] Barros M. C., Fernandes I.P., Amaral J. S., Barreiro M. F., Pinto V., Ferreira M. J.: Chitosan as an antimicrobial agent for footwear leather components, w: 2nd International Conference on Biodegradable Polymers and Sustainable Composites (BIOPOL-2009), Alicante, Hiszpania 2009.
  • [20] Kurita K.: Controlled functionalization of the polysaccharide chitin, Progress in Polymer Science, 26, 2001; str. 1921–1971.
  • [21] Bannikova G. E., Sukhanova P. P., Vikhoreva G. A., Varlamov V. P., Gal’braikh L.S.: Hydrolysis of chitosan sulfate with an enzyme complex from Streptomyces kurssanovii, Applied Biochemistry and Microbiology, 38, 2002, str. 413 – 415.
  • [22] Polnok A., Verhoef J. C., Borchard G., Sarisuta N., Junginger H. E.: In vitro evaluation of intestinal absorption of desmopressin using drug delivery systems based on super porous hydrogels. International Journal of Pharmaceutics, 269, 2004, str. 303 – 310.
  • [23] Sieval A. B., Thanou M., Kotze A. F., Verhoef J.C., Brussee J., Junginger H. E.: Preparation and NMR characterization of highly Substituted N-trimethyl chitosan chloride, Carbohydrate Polymers, 36, 1998; str. 157 – 165.
  • [24] Le Dung P., Milas M., Rinando M., Desbrieres J.: Water soluble derivatives obtained by controlled chemical modification of chitosans, Carbohydrate Polymers, 24, 1994, str. 209 – 214.
  • [25] Wongpanit P., Sanchavanakit N., Pavasant P., Supaphol P., Tokura S., Rujiravanit R.: Preparation and characterization of microwave treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application, Macromolecular Bioscience, 5, 2005, str. 1001 – 1012.
  • [26] Muzzarelli R. A. A., Tanfani F., Emanuelli M.: N-(carboxymethyli-dene) chitosans and N-(carboxymethyl) chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate, Carbohydrate Research, 107, 1982, str. 199 – 214.
  • [27] US Patent 6090928, Donges R., Reichel D., Kessler B.: Process for the preparation and work-up of N-hydroxyalkyl chitosan soluble in aqueous medium, 2000.
  • [28] Richardson S., Gorton L.: Characterization of the substituent distribution in starch and cellulose derivatives, Analytica Chimica Acta, 497, 2003, 27 – 65.
  • [29] Yao F., Liu C., Chen W., Bai Y., Tang Z., Yao K.: Synthesis and characterization of chitosan grafted oligo(L-lactic acid), Macromolecular Bioscience, 3, 2003, str. 653 – 656.
  • [30] Shim J. W, Nho Y. C.: Preparation of poly(acrylic acid)–chitosan hydrogels by gamma irradiation and in vitro drug release, Journal of Applied Polymer Science, 90, 2003, str. 3660 – 3667.
  • [31] Yazdani – Pedram M., Retuert J.: Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan, Journal of Applied Polymer Science, 63, 1997, str. 1321 – 1326.
  • [32] Henning T.: Polyethylene glycols (PEGs) and the pharmaceutical industry, Pharma Chem, 1, 2002, str. 57 – 59.
  • [33] Alcantar N. A., Aydil E.S., Israelachvili J. N.: Polyethylene glycol-coated biocompatible surfaces, Journal of Biomedical Materials Research, 51, 2000, str. 343 – 351.
  • [34] Zhang Y., Kohler N., Zhang M.: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials, 23, 2002, str. 1553 – 1561.
  • [35] Hutanu D., Frishberg M. D., Guo L., Darie C. C.: Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives, Modern Chemistry and Applications 2, 2014, str. 132.
  • [36] Veronese F. M., Pasut G.: PEGylation, successful approach to drug delivery, Drug Discovery Today, 10, 2005, str. 1451 – 1458.
  • [37] Harris J. M., Struck E. C., Case M. C., Paley M. S., Yalpani M., Van Alstine J. M., Brooks D. E.: Synthesis and characterization of poly(ethylene glycol) derivatives, Journal of Polymer Science Part A: Polymer Chemistry, 22, 1984, str. 341 – 352.
  • [38] Bhattarai N., Ramay H. R.: PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release, Journal of Controlled Release, 103, 2005, str. 609 – 624.
  • [39] Sugimoto M., Morimoto M., Sashiwa H., Saimoto H., Shigemasa Y.: Preparation and characterization of water-soluble chitin and chitosan derivatives, Carbohydrate Polymers, 36, 1998, str. 49 – 59.
  • [40] Kulkarni A.R., Lin Y.H., Liang H.F., Chang W. C., Hsiao W. W., Sung H. W.: A novel method for the preparation of nanoaggregates of methoxypolyethylene glycol linked chitosan, Journal of Nanoscience and Nanotechnology, 6, 2006, str. 2867 – 2873.
  • [41] Muslim T., Morimoto M., Saimoto H., Okamoto Y., Minami S., Shigemasa Y.: Synthesis and bioactivities of poly(ethylene glycol) - chitosan hybrids, Carbohydrate Polymers, 46, 2001, str. 323 – 330.
  • [42] Ouchi T., Nishizawa H., Ohya Y.: Aggregation phenomenon of PEG grafted chitosan in aqueous solution, Polymer, 39, 1998, str. 5171 – 5175.
  • [43] Jang M – K., Nah J – W.: Characterization. Modification of low molecular water-soluble chitosan for pharmaceutical application, Bulletin of the Korean Chemical Society, 24, 2003, 1303 – 1307.
  • [44] Luo Q., Gao H., Peng L., Liu G., Zhang Z.: Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather, Journal of Applied Polymer Science, 133 (22), 2016, str. 1-7.
  • [45] Hu Y., Jiang H., Xu C., Wang Y., Zhu K.: Preparation and characterization of poly(ethylene glycol)-g-chitosan with water-and organosolubility, Carbohydrate Polymers, 61, 2005, str. 472 – 479.
  • [46] Kiuchi H., Kai W., Inoue Y.: Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films, Journal of Applied Polymer Science, 107, 2008, str. 3823 – 3830.
  • [47] Tanuma H., Saito T., Nishikawa K., Dong T., Yazawa K., Inoue Y.: Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior, Carbohydrate Polymers, 80, 2010, str. 260 – 265.
  • [48] Amiji M. M.: Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications, Carbohydrate Polymers, 32, 1997, str. 193 – 199.
  • [49] Jeong Y-I., Kim D-G., Jang M-K., Nah J-W.: Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan, Carbohydrate Research, 343, 2008, str. 282 – 289.
  • [50] Sugimoto M., Morimoto M., Sashiwa H., Saimoto H., Shigemasa Y.: Preparation and characterization of water-soluble chitin and chitosan derivatives, Carbohydrate Polymers, 36, 1998, str. 49 – 59.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4e98aa6-a29e-46ed-ae06-39be2425ebaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.