PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Alloying of Cupronickel Alloy with Aluminum using Tungsten Inert Gas Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface melting and alloying of Copper-Nickel (Cupronickel) alloy by preplacing aluminum powder and using tungsten inert gas process (TIG) in shielded atmosphere of argon gas were investigated. Surface melting resulted in the formation of a fairly porous dendritic microstructure. Surface alloying with aluminum resulted in the formation of Al2Cu and Al4Cu9 intermetallic compounds along with Cu-rich matrix and unstable martensitic structure. Surface melting reduced the hardness from 140 HV0.1 (substrate) to 70 HV0.1, mainly due to the loss of cold work effect of the initial substrate. On the other hand, surface alloyed zone showed a hardness of 300 HV0.1, mainly due to the formation of intermetallic compound. Tafel polarization results indicated improvement in corrosion resistance of cupronickel alloy after surface melting and alloying.
Słowa kluczowe
Twórcy
  • University of Tehran, College of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran
  • University of Tehran, College of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran
  • Islamic Azad University, Faculty of Engineering, Department of Metallurgy and Materials, Karaj Branch, Karaj, Iran
Bibliografia
  • [1] R. Francis, The Corrosion of Copper and Its Alloys: A Practical Guide for Engineers, NACE International, US. (2010).
  • [2] X. Zhu, T. Lei, Corros. Sci. 44, 67-79 (2002).
  • [3] A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245-261 (2015).
  • [4] Q. Luo, Z. Qin, Z. Wu, B. Shen, L. Liu, W. Hu, Corros. Sci. 138, 8-19 (2018).
  • [5] F. Yang, H. Kang, E. Guo, R. Li, Z. Chen, Y. Zeng, T. Wang, Corros. Sci. 139, 333-345 (2018).
  • [6] A. Schüssler, H.E. Exner, Corros. Sci. 34, 1793-1802 (1993).
  • [7] S. Nair, R. Sellamuthu, R. Saravanan, Effect of Nickel content on hardness and wear rate of surface modified cast aluminum bronze alloy, in: Mater. Today Proc., Elsevier Ltd, 6617-6625 (2018).
  • [8] Z. Wu, Y.F. Cheng, L. Liu, W. Lv, W. Hu, Corros. Sci. 98, 260-270 (2015).
  • [9] A.R.J.S. Murthy, H.N.A. L., S.K. H., Adv. Mater. Process. Technol. (2020). DOI: https://doi.org/10.1080/2374068X.2020.1855403
  • [10] M.A. Shaik, K.H. Syed, B.R. Golla, Corros. Sci. 153, 249-257 (2019).
  • [11] M.D. Fuller, S. Swaminathan, A.P. Zhilyaev, T.R. McNelley, Mater. Sci. Eng. A. 463, 128-137 (2007).
  • [12] C. Zhang, P. Lv, J. Cai, C.T. Peng, Y. Jin, Q. Guan, Appl. Surf. Sci. 422, 582-590 (2017).
  • [13] C. Zhang, N. Tian, L. Li, Z. Yang, P. Lv, J. Yunxue, H. Zhu, Q. Guan, Vacuum 174, 109222 (2020).
  • [14] P.K. Wong, C.T. Kwok, H.C. Man, F.T. Cheng, Corros. Sci. 57, 228-240 (2012).
  • [15] C.T. Kwok, P.K. Wong, H.C. Man, Surf. Coatings Technol. 297, 58-73 (2016).
  • [16] C.H. Tang, F.T. Cheng, H.C. Man, Surf. Coatings Technol. 182, 300-307 (2004).
  • [17] C.H. Tang, F.T. Cheng, H.C. Man, Surf. Coatings Technol. 200, 2602-2609 (2006).
  • [18] C.H. Tang, F.T. Cheng, H.C. Man, Surf. Coatings Technol. 200, 2594-2601 (2006).
  • [19] G. Rogalski, A. Świerczyńska, M. Landowski, D. Fydrych, Metals 10 (5), 559 (2020). DOI: https://doi.org/10.3390/met10050559
  • [20] J. Tomków, K. Sobota, S. Krajewski, Facta Univ. Ser. Mech. Eng. 18, 611-621 (2020). DOI: https://doi.org/10.22190/FUME200520044T
  • [21] J. Górka, M. Przybyła, M. Szmul, A. Chudzio, D. Ładak, Adv. Mater. Sci. 19 (3), 55-64 (2019). DOI: https://doi.org/10.2478/adms-2019-0017
  • [22] S.A. Kumar, P. Sathiya, Mater. Manuf. Process. 30 1154-1159 (2015).
  • [23] M. Heydarzadeh Sohi, S.M.H. Hojjatzadeh, A. Khodayar, A. Amadeh, Surf. Coatings Technol. 325, 617-626 (2017).
  • [24] D. Raju, A.R. Govindan, J. Subramanian, S. Ramachandran, S. Nair, Surface alloying of aluminium bronze with chromium: Processing, testing, and characterization, in: Mater. Today Proc., Elsevier Ltd, 2191-2199 (2019).
  • [25] A. Ardeshiri, M.H. Sohi, A. Safaei, Surf. Coatings Technol. 310, 87-92 (2017).
  • [26] J.H. Park, Y.H. Kim, H.J. Baek, S.M. Cho, J. Manuf. Process. 40, 140-148 (2019).
  • [27] L. Brown, Cost-Effective Manufacturing: Joining of Copper and Copper Alloys, CDA. Publ. (98) (1994).
  • [28] S. Dadras, M.J. Torkamany, J. Sabbaghzadeh, Opt. Lasers Eng. 46, 769-776 (2008).
  • [29] F.H. Ley, S.W. Campbell, A.M. Galloway, N.A. McPherson, Int. J. Adv. Manuf. Technol. 80, 1213-1221 (2015).
  • [30] D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, ASM Handbook, Vol. 6 Welding, Brazing, and Soldering, ASM International, Metals Park, Ohio (1993).
  • [31] W.K. Hamoudi, R.A. Ismail, F.I. Sultan, S. Jaleel, Lasers Manuf. Mater. Process. 4, 24-35 (2017).
  • [32] D. Zuo, S. Hu, J. Shen, Z. Xue, Mater. Des. 58, 357-362 (2014).
  • [33] E.B. Hannech, N. Lamoudi, N. Benslim, B. Makhloufi, Surf. Rev. Lett. 10 (4), 677-683 (2003).
  • [34] B. Çorlu, M. Ürgen, Surf. Coatings Technol. 205, 540-544 (2010).
  • [35] H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Acta Mater. 59, 5661-5673 (2011).
  • [36] F.A. Anene, N.E. Nwankwo, V.U. Nwoke, Metall. Mater. Eng. 25, 147-162 (2019).
  • [37] J. Fang, G. Song, W. Liu, Q. Li, Microstructure evolution of ascast nickel aluminum bronze under electropulsing, in: Key Eng. Mater., Trans Tech Publications Ltd, 28-34 (2020).
  • [38] H.K. Chandra Mohan, S. Devaraj, K.S. Narayana Swamy, Metallogr. Microstruct. Anal. 10, 36-45 (2021).
  • [39] T. Murray, S. Thomas, Y. Wu, W. Neil, C. Hutchinson, Addit. Manuf. 33, 101122 (2020).
  • [40] Z. Qin, Q. Zhang, Q. Luo, Z. Wu, B. Shen, L. Liu, W. Hu, Corros. Sci. 139, 255-266 (2018).
  • [41] J. Dutta Majumdar, I. Manna, Mater. Sci. Eng. A. 268, 216-226 (1999). DOI: https://doi.org/10.1016/s0921-5093(99)00112-4
  • [42] A. Morales, O. Piamba, J. Olaya, Coatings. 9 (11), 722 (2019). DOI: https://doi.org/10.3390/coatings9110722
  • [43] W.G. Jiru, M.R. Sankar, U.S. Dixit, J. Mater. Eng. Perform. 25, 1172-1181 (2016).
  • [44] M. Scendo, S. Spadlo, K. Staszewska-Samson, P. Mlynarczyk, Metals 10 (7), 966 (2020). DOI: https://doi.org/10.3390/met10070966
  • [45] X. Zhao, Y. Qi, J. Wang, Z. Zhang, J. Zhu, L. Quan, D. He, Materials 13 (7), 1790 (2020). DOI: https://doi.org/10.3390/ma13071790
  • [46] X. Zhao, Y. Qi, J. Wang, T. Peng, Z. Zhang, K. Li, Metals 10 (9), 1227 (2020). DOI: https://doi.org/10.3390/met10091227
  • [47] D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, Y.G. Zheng, Corros. Sci. 52, 1610-1617 (2010). DOI: https://doi.org/10.1016/j.corsci.2010.02.026
  • [48] Z. Qin, D.H. Xia, Y. Zhang, Z. Wu, L. Liu, Y. Lv, Y. Liu, W. Hu, Corros. Sci. 174, 108744 (2020).
  • [49] J.A. Wharton, K.R. Stokes, Electrochim. Acta. 53, 2463-2473 (2008).
  • [50] B. Sabbaghzadeh, R. Parvizi, A. Davoodi, M.H. Moayed, Mater. Des. 58, 346-356 (2014).
  • [51] D. Liu, H. Chen, J. Wu, E. Then, Corrosion Behavior of Cu-Al Intermetallic Compounds in Copper Wire Bonding in Chloride-Containing Accelerated Humidity Testing, in: Proc. - Electron. Components Technol. Conf., Institute of Electrical and Electronics Engineers Inc. 629-636 (2016).
  • [52] Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71, 606-614 (2015).
  • [53] R.M. Pidaparti, B.S. Aghazadeh, A. Whitfield, A.S. Rao, G.P. Mercier, Corros. Sci. 52, 3661-3666 (2010).
  • [54] A. Al-Hashem, W. Riad, Mater. Charact. 48, 37-41 (2002).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4e8bebf-ec81-4b0a-8902-2585e57e6224
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.