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APPLICATION OF MODULAR COMPUTING TECHNOLOGY 
FOR CREATING A CRYPTOGRAPHIC INFORMATION 

SECURITY SYSTEM 

Abstract. In the present paper, we deal with the application of the parallel modular com-

puting structures for creating a cryptographic information security system. The proposed 

computer-arithmetical base of the modular computing technology within the minimal 

redundant modular coding allows us to attain an essential increase of performance, de-

gree of internal parallelism and data encryption rate of cryptographic algorithms. The 

designed parallel encrypting algorithm is characterized by a maximum level of unloading 

of the real time computing process from the labor-consuming calculations, which can be 

realized by means of the look-up tables formed at a stage of preliminary calculations. 

Keywords: information security, cryptosystem, cryptogram, encryption, modular arithme-

tic, modular number system. 

ZASTOSOWANIE MODULARNEJ TECHNOLOGII 
OBLICZENIOWEJ DO TWORZENIA KRYPTOGRAFICZNYCH 

SYSTEMÓW OCHRONY INFORMACJI 

Streszczenie. W niniejszej pracy mamy do czynienia z zastosowaniem równoległych 

modularnych struktur obliczeniowych przy tworzeniu kryptograficznych systemów 

ochrony informacji. Zaproponowano komputerowo-arytmetyczn� baz� modularnej tech-

nologii obliczeniowej, która, w ramach minimalnie nadmiernego kodowania modular-

nego, pozwala znacznie poprawi
 skuteczno�
 oraz zwi�kszy
 stopie� równoległo�ci 

i szybko�
 realizacji przekształce� kryptograficznych. Opracowany algorytm szyfrowa-

nia charakteryzuje si� maksymalnym zmniejszeniem rz�du zło�ono�ci obliczeniowej 
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przez zrealizowanie w czasie rzeczywistym skomplikowanych i �mudnych oblicze� za 

pomoc� wst�pnie wygenerowanych tabel. 

Słowa kluczowe: bezpiecze�stwo informacji, kryptosystem, kryptogram, szyfrowanie, 

modularna arytmetyka, modularne systemy liczbowe. 

Introduction 

The development of computer technology, emergence of new multimedia 

means and high-bandwidth networks has led to the need to apply the new tech-

nologies providing the real time processing and transmission of large volumes 

of data in the modern information systems. Therefore, the problem of ensuring 

confidentiality and integrity of information requires the high performance of 

used data security systems. 

When the cryptographic information security systems (CISS) is created it 

is necessary increasingly more often to solve the problems requiring fast carry-

ing out of large volumes of high-precision calculations. The conventional meth-

ods for implementation of such tasks based on positional arithmetic are not ade-

quately efficient and in many cases are simply unacceptable owing to internal 

structure of sequential computer algorithms. The actuality of creation and im-

plementation in practice of essentially new computing technologies of fast par-

allel high-precision calculations in CISS, first of all, a modular technology of 

information processing, is also defined by this circumstance [2, 5, 7, 9, 10]. 

In this paper, we consider the possibility of using modular computing 

structures (MCS), in possession of the maximal level of internal parallelism, in 

constructing of CSII. The computer-arithmetical base of modular computing 

technology (MCT) which within the minimum excess modular coding allows us 

significantly to increase performance, degree of parallelism and execution speed 

of cryptographic algorithms is offered. 

Principles of block chipper in CISS 

The mathematical data encryption algorithms that prevent confiden-

tial information leakage are the basis behind the methods used in CISS. The 

plaintext message is a linear sequence of symbols from some alphabet. As ex-

amples of the alphabets used in modern information systems we can cite the 

following alphabets such as the common alphabet of Latin letters, the Cyrillic 

alphabet, the ASCII alphabet, etc. [1, 3, 4, 8, 17]. 

Let us denote the plaintext message by T, and corresponding to it 

ciphertext (cryptogram) by C. Then, the encryption can be represented as a 

function + which converts a plaintext T into a ciphertext C: 
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, � +	�� #-�  (1) 

Similarly, the decryption can be represented as a function . which converts a 

ciphertext C into a plaintext T : � � .	,� #/�. (2) 

In formulas (1) and (2) #- �and #/�designate an encryption and decryption keys 

respectively. In the case when #- � #/ we have a symmetric cryptographic sys-

tem, otherwise when�#- 0 #/ a cryptographic system is asymmetric [1, 3, 17]. 

The development of data encryption algorithms based on the rational choice of 

functions which transform the plaintext message to the cryptogram. The idea of 

direct application of such a function to the whole message is implemented very 

rarely. In practice, all applicable cryptographic transformations are associated 

with the partition of a message into a lot of fixed-length blocks, each one of 

them is encrypted separately. This approach simplifies essentially the encryp-

tion problem and allows an unlimited length data burst enciphering. 

Let us consider a method of block encryption of a data stream. The 

plaintext T is partitioned into blocks �1� �*� 2 � �3, where �4 	5 � 
� �� 2 � 6� rep-

resents a finite sequence of characters of some alphabet having a specified 

length. At the same time the formation of the corresponding sequence of cryp-

tograms ,1� ,*� 2 � ,3 requires s encryption operations. Therefore, the transfor-

mation (1) can be rewritten in the following form: 

���
��,1 � +7�1� #-�18�,* � +7�*� #-�*8�2�2�2,3 � +7�3� #-�389

$(3) 

It should be noted that the plaintext blocks �1� �*� 2 � �3�can be formed out 

of messages belonging to the same user or out of independent messages belong-

ing to s different users. Both a one key �#- � #-�1 � #-�* � : � #-�3 and a set ;#-�1� #-�*� 2 � #-�3< of s keys corresponding to the number of plaintext blocks 

can be used for encryption. At the same time, it does not matter whether in se-

ries or in parallel each of enciphering processes is occurred. 

The process of block decryption of a data stream may be also described 

similarly. The transformation (2) can be represented as follows 

���
���1 � .7,1� #/�18��* � .7,*� #/�*8�2�2�2�3 � .7,3� #/�389

$(4) 
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At the same time, the sequential or parallel implementation of (4) is possible too. 

Block ciphers are the basis on which realized almost all modern cryp-

tosystems and their characteristic feature consists in the fast processing speed. 

In the block cryptographic algorithms all operations performed on data are 

based on the fact that the transformable block can be represented as a non-

negative integer number which belongs to the range corresponding to its digit 

capacity.  

The plaintext block coding 

Let us an alphabet = �{>1� >*� 2 � >?< containing k unique characters be 

generally set. Let us consider the plaintext block �4 	5 � 
� �� 2 � 6� representing 

a character string of length l over the alphabet =. It is possible to use the follow-

ing method of encoding of a given string. For this purpose, we will set a num-

bering on the alphabet, i.e. we will assign a number from 0 to�� � 
 to each 

character of the alphabet�=:�>1 @ �� >* @ 
�2 � >? @ � � 
9 Now the string 

represents a sequence of numbers of the ABCD* �E-bit length from the set ;�� 
� 2 � � � 
<�(AxE designates the nearest to F�integer at the right). In this case, 

the number of bits for representation of the same plaintext block is equal to G � ABCD* �E. 
Another method of encoding consists in representation of the considered 

string �4 as some natural number H4 in the number system with a base p 	5 � 
� �� 2 � 6�. At the same time, we have: 

H4 �I�4JKL � 
MN&1
MOP ��������������������������	�� 

where � Q H R 
N � �4JKL is a number corresponding to the Kth character of string �4, �4JKL S TU � ;�� 
� 2 � 
 � 
<9 Thus, some integer H4 from the range J�� 
N� 
corresponds to the specified string �4 of length G over the alphabet =. It is clear, 

that to the different blocks there will correspond the different integer numbers 

and vice versa. Therefore, now it is possible to operate with these numbers in-

stead of character strings. For example, in order to transfer a block �4 over a 

communication channel it is enough to transmit the corresponding number H4 
which requires " � VBCD* 
NW � AG � BCD* 
E bits for binary representation. The 

defined encoding version is called a polynomial encoding because it is neces-

sary to calculate a polynomial for receiving the values of H4 (see. (5)). 
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Thus, in conventional CISS operating at positional number system the plaintext 

T is interpreted as a set of blocks �4��	5 � 
� ��2 � 6� representing a binary code 

of corresponding numbers H4: 
                  

���
��H1 � XFY&1	1� � �FY&*	1� � 2 � FP	1�Z* �H* � XFY&1	*� � �FY&*	*� � 2 � FP	*�Z* �2�2�2H3 � XFY&1	3� � �FY&*	3� � 2 � FP	3�Z* 9

$(6) 

The binary number [4 � X\Y&1	4� � �\Y&*	4� � 2 � \P	4�Z* belonging to the range J�� �Y� 
similarly corresponds to the cryptogram ,4 	5 � 
� �� 2 � 6�. 
The level of computational complexity of the used encryption algorithms (3) 

and (4) is a main factor that does exert a significant influence on qualitative 

characteristics of CISS. At the present time there exists a situation when the use 

of conventional representation of information and positional arithmetic in many 

cases cease to meet the increased requirements for the CISS performance. One 

of the ways to improve a CISS is the transition to the unconventional computing 

arithmetic, i.e. by performing all the computations using a modular number 

system (MNS), that allows us to parallelize the encrypting and decrypting pro-

cesses and to attain the essential increase in data processing rate [2, 5, 7, 9, 10].  

The computer-arithmetical basis of modular computing 

technology for creating a CISS 

At the present time a MCT is widely used in parallel processing systems 

to solve problems demanding fast and exact calculations. The spectrum of such 

tasks covers, in particular, procedures of digital signal processing, carrying out 

calculations in the ranges of large numbers, creation of high-speed computer 

aids for performing of multiplication and exponentiation operations over big 

modules, mainly multiplicative procedures on the basis of Barret's and Mont-

gomery’s reduction schemes and so on [2, 5, 7, 9, 10-12, 15, 16]. 

A classic MNS on the set of integers�T is determined by means of pairwise relati-

vely prime modules ]1� �]*� 2 �]? �	� ^ ��9 In the given MNS the number �H S T is represented as H � 	�1, �*� …, �?�, where �M � _H_�`a we shall desig-

nate through _F_� the element of the set T� �� ;�� 
�2 �] � 
<�that is congruent 

to F modulo ]. In the nonredundant MNS with the bases�]1� �]*� 2 �]? it is 

possible to code at most �? � b ]M?MO1  integers. At the same time the sets Tcd � ;�� 
� 2 ��? � 
< and Tef& � ;�g�? �h i� �g�? �h i � 
�2 � A�? �h � 
E< 
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are usually used as a range of MNS (the designation gFi�is used for the nearest to F integer at the left) [2, 5, 13, 14]. 

In the MNS with the bases ]1� �]*� 2 �]? the modular operations (addi-

tion, subtraction and multiplication without overflow check) on any two integers = and j� represented by means of modular codes (MC): =� � � 	�1��*� 9 9 9 ��?�� j � 7�1� ��*� 9 9 9 � �?8�	�M �� _=_�` � ��M � _j_�` � K� � �
� �� 9 9 9 � �), are carried out 

independently for each base, i.e. by the rule = k j � � 	�1��*� 2 ��?� �k �7�1� ��*� 2 � �?8 � ��� Xl�1 k �1l�m � l�* k �*l�n � 2 � l�? k �?l�dZ�	k�S ;�����<�9   (7) 

The natural internal parallelism of MNS caused by the lack of interdigit 

carry propagation during performance of modular operations (7) holds a central 

position in all the advantages of modular arithmetic (MA). Since the compo-

nents of the MC have a small code length and the ring operations are performed 

in the MNS independently for each module then the MA gives in essence new 

possibilities to increase the computation speed. The mentioned property is of 

particular importance especially for applications of MCT in cryptography.  

The positional value of the number X can be obtained by its MC. The de-

coding mapping ocpqr�Tst ��Tsu � 2��Tsf @ �v for the MNS with a ran-

ge�v � Tcd which associates the M, 	�1, �*� …, �?��with an element X S v 

can be realized according to the Chinese Remainder Theorem by means of the 

relations 

H ��I�M�?l�M�?&1wMl�`
?
MO1 � x?	H��?�������������������������������	�� 

H ��I�M�?&1l�M�?&1&1 wMl�`
?&1
MO1 � y	H��?&1���������������������	�� 

where �M�N ���N �z]M� �N � b ]MNMO1 �	G � � � 
� ��;�x?	H� and y	H��are an 

integral characteristics of MC called a rank and an interval index (II) of a num-

ber X with respect to the modules ]1� �]*� 2 �]?, respectively; _{&1_� desig-

nates the multiplicative inversion of an integer { modulo ] which is defined as 

an element | of a ring T� such that _{|_� � 
. For any�{ relatively prime to ] 

the value | � _{&1_� always exists and is unique. The expressions (8) and (9) 

are called a rank form and an interval-modular form (IMF) of an integer H, re-

spectively [2, 5]. 

The main component of optimization process of the MCS applied to creation a 

CISS consists in simplification of the basic non-modular procedures, first of all, 

the operations of transformation and expansion of M, realized on the basis of 
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relations (8) and (9). In the classical MNS the calculation of a rank characteris-

tic x?	H� and an interval index y	H� needs an application of the general algo-

rithm for generating the integral characteristics of MC which is quite difficult 

and labor-consuming [2, 6]. 

As is generally known, it is possible to improve significantly the arith-

metic properties of MNS and to optimize the algorithms of MA by introducing 

the so-called minimal additional redundancy which is carried out by some re-

duction of the effective range of MNS. The minimal redundant modular coding oc}cpqr�Tst ��Tsu � 2��Tsf @ �v provides the use of the range v with a 

cardinal number _v_ R �?. The resulting redundant MNS is naturally a re-

striction of the original non-redundant MNS and possesses all its advantages. In 

the case of redundant MNS a set Tue& � ;����� � 
�2 �� � 
< is usually 

applied as a range v, where � � ]P�?&1�]P is a fixed natural number.  

The essence of the principle of minimal redundant modular coding is 

disclosed in [2, 5, 13, 14]. In this case, the calculation of the II y	H��of a number H S v becomes extremely simple since its value is completely defined by the 

so-called computer II y~?	H� � _y	H�_�d and is reduced to summation of a set of � residues modulo ]?. The required configuration of minimum redundant MNS 

(MRMNS) is achieved by the choice of the �th module�]? satisfying a condi-

tion ]? ^ �]P � x, where 

x � � �I]M � 
]M
?&1
MO1 � � � � 
 � �I 
]M

?&1
MO1 � Q � � �������������	
�� 

represents the maximum value of the rank characteristic x?&1	H� determined by 

the equality 

_H_cd�m ��I�M�?&1l�M�?&1&1 wMl�`
?&1
MO1 � x?&1	H��?&1� 

(the designation AFE is used for the nearest to F integers at the right). The mini-

mal redundancy is attained in the case when the equality ]? � �]P����� �_]? � �_* holds. 

At the same time, the following relation is true: 

���������y	H� � � y~?	H������������y~?	H� R ]P�y~?	H� � ]? � ����y~?	H� ^ ]? �]P � x��������������	

�$ 
where the residue y~?	H� is determined according to the calculation relations 

��������������������y~?	H� � �I�M�?	wM�?
MO1 �

�d
a ���������������������������������	
��� 
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�M�?	wM� � ���l�M�?&1&1 wMl�`]M �
�d

�	K 0 �������?�?	w?� � � � w?�?&1��d
9���	
��� 

For many computer applications including also most of modern CISS it is 

enough to use as basic the version of minimal redundant MA (MRMA) oriented 

on operating only with non-negative integers. In this case, a set Tc � ;�� 
� 2 �� � 
< is usually applied as a range v. Then the configuration 

of used MRMNS is achieved by the choice of the �th module�]? satisfying 

a condition ]? ^ ]P � x. The relation for y	H� looks like 

�����������y	H� � � y~?	H������������y~?	H� R ]P�y~?	H� � ]? � ����y~?	H� ^ ]? � x9��������������������������	
 �$ 
In spite of the fact that the input additional redundancy is very small, just 

it allows us to simplify significantly the algorithms of performance of non-

modular operations. It is seen from the relations (11) – (14) that in comparison 

with conventional (non-redundant) configurations of the MA a minimal redun-

dant modular coding allows us to attain an essentially new level of optimization 

of nonmodular procedures on such qualitative characteristics as performance 

and computational burden. This is caused by the fact that the nonmodular pro-

cedures synthesized on the basis of IMF (9) use an interval index which is cal-

culated by means of the simple relations and is formed precisely, without an 

error inherent in the calculation of the rank characteristic [2, 5]. The main ad-

vantages of applied modular computing technology for the construction of CISS 

are determined by the reason mentioned above, and a MRMA represents an 

effective computer-arithmetical basis for the realization of various cryptograph-

ic tasks. 

As regards the commonly used and promising methods of cryptographic 

information protection, for most of them the modular multiplication and expo-

nentiation consist a most time-consuming part of the basic encryption equations. 

In other words, these equations to a great extent possess a modular computer 

structure. This reason naturally led to the idea of application of the adequate 

methodological, algorithmic and hardware aids generated by modular coding in 

the CISS.  

The parallel encryption system in the MNS 

Let us consider the realization of parallel encryption of the plaintext 

block �4�	5 � 
� �� 2 � 6� using the minimal redundant modular coding. This 
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block of length L bits represents some non-negative integer number H4 � XFY&1	4� � �FY&*	4� � 2 � FP	4�Z* from the range J�� �Y�.  
Let us set the basic MRMNS with the bases ]1� �]*� 2 �]? and the 

range Tc. At the same time the modules ]M�	K � 
� ��2 � �� are chosen so as to 

satisfy the relation � � �Y. The combination of the chosen modules of 

MRMNS represents the confidential information in the CISS. 

The number�H4 S T*�  corresponding to the information block is uniquely 

coded in the MRMNS by the set of residues wM	4� � lH4l�` �modulo ]M 	K �
� �� 2 � ��, i.e. H4 � 	w1	4�� w*	4�� 2 � w?	4��9 The transformation of the positional 

binary code XFY&1	4� � �FY&*	4� � 2 � FP	4�Z* of an integer H4 to the minimal redundant 

MC (MRMC) is carried out within the parallel and pipelined MCS of look-up 

table type [2, 5]. 

Further a procedure for the encryption is applied to the block represented in 

MRMC. For this purpose at first the key sequence�#-�4�of length " bits (see (3)) has 

to be generated by means of pseudorandom sequence generator. This key sequence 

in the MRMNS is represented by means of the set of residues 	�1	-�4�, �*	-�4�� …, �?	-�4��, �M	-�4� � l#-�4l�` � #-�4 S Tc; 5 � 
� �� 2 � 6a �K � 
� ��2 � �. 

The process of encrypting represents the imposition of key sequence over 

the information block in an MRMNS. This procedure can be considered as real-

ization of some transformation [4 � l�7H4 � #-�48lcd which is carried out in 

parallel over the modules ]1� �]*� 2 �]?. An encryption procedure adapted to 

MRMC has the form  

                  

��
�
���1

	4� � �+ Xw1	4�� ��1	-�4�Z��m ��*	4� � �+ Xw*	4�� ��*	-�4�Z��n �2��2��2�?	4� � �+ Xw?	4�� ��?	-�4�Z��d �
$ 

where �M	4� � l[4l�` � [4 S Tc; 5 � 
� �� 2 � 6a �K � 
� ��2 � �. 

In the MRMNS the various types of linear and nonlinear cryptographic 

functions and their combinations can be realized, for example 

�M	4� � �wM	4� � ��M	-�4���`,��M	4� � �wM	4� � ��M	-�4���` � �M	4� � �wM	4���	̀������`
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	K � 
� �� 2 � ���and their combinations. The considered operations are per-

formed in parallel over all modules of the MRMNS. The resulting MRMC of 

the number [4 � 	�1	4�� �*	4�� 2 � �?	4���corresponding to the cryptogram ,4 enters 

to a communication channel.  

Similar to parallel encrypting operation the decrypting operation is reduced to 

calculation of an MC of the number H4 corresponding to information block �4�	5 � 
� �� 2 � 6�. This process can be represented as follows 

                       

��
�
��w1

	4� � �. X�1	4�� ��1	/�4�Z��m �w*	4� � �. X�*	4�� ��*	/�4�Z��n �2��2��2w?	4� � �. X�?	4�� ��?	/�4�Z��d �
$ 

where �M	/�4� represents the ith residue of the MRMC 	�1	/�4�, �*	/�4�� …, �?	/�4���of key sequence #/�4 S Tc; 5 � 
� �� 2 � 6a �K � 
� ��2 � �. Further the 

generated MRMC Xw1	4�� w*	4�� 2 � w?	4�Z of the number H4 in accordance with an 

IMF (9) converts to the positional code within the framework of the parallel and 

pipelined MCS of table type [2, 5]. As a result, we receive the plaintext block �4. 
Final remarks 

The usefulness of application of the MA in CISS is imposed first of all by 

internal parallelism of M,S that provides them a number of significant ad-

vantages over position structures at an implementation of cryptographic algo-

rithms. These advantages include: 

− any operation in MNS is always reduced to sequence of single-cycle op-

erations over the low-bit residues; 

− the independence of the execution times of modular operations (addition, 

subtraction and multiplication without overflow check) of the number of 

modules, and thus of the length of MNS code; 

− the perfect suitability to application of a tabular method of information 

processing at boss the hardware and software levels; 

− the extreme simplicity of the pipelining the calculation at the level of 

low-bit tabular operations; 

− the high regularity, uniformity and technological effectiveness of basic 

modular architecture. 
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Thus, the use of the MCS for the CISS design allows us to attain essential 

increase of performance due to the data representation in the MRMC and, ac-

cordingly, the parallel implementation of cryptographic transformations. It 

should be noted that the designed parallel encrypting algorithm is characterized 

by a maximum level of unloading of the real time computing process from the 

labor-consuming calculations, which can be realized by means of the look-up 

tables formed at a stage of preliminary calculations. It gives the capability to 

use an extremely simple table-summation configuration of the CISS, which is 

only implementing extraction of residues from tabular memory and their sum-

mation over the bases of the MRMNS. 
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