PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Simulation of Chlorine Dispersion in Rrural Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacja 3D dyspersji chloru w terenie wiejskim
Języki publikacji
EN
Abstrakty
EN
Prediction of hazardous substances dispersion resulting from accidental leakage in environment is essential for risk analysis and emergency response. Different numerical tools are applied for description of dispersion process. Development of numerical algorithms has enabled the computational fluid dynamics (CFD) models to be used extensively in indoor dispersion studies. Numerical methods based on computational fluid dynamics (CFD) may facilitate the precise investigation of the hazardous substances dispersion. Therefore, the aim of the study was to prepare a transient CFD model describing the phenomena of chlorine dispersion in a dynamic setup including different environmental factors. Reliable computational description of dispersion process still represents one of the most challenging applications. Therefore, we aimed to prepare a transient 2D and 3D numerical models of chlorine dispersion from a ground source in a dynamic setup. For 2D simulation a Degadis model was used, while for 3D approach a multiphase Volume of Fluid model (VOF) was applied. For both analyzed cases area of investigation was equal to 0.1 km2. Furthermore, for 3D simulations height was equal to 50 m. For the reconstruction of atmospheric conditions Pasquill stability classes and one-direction wind were applied. Analysis of chlorine concentration in function of wind intensity indicated extension of chlorine cloud with decrease of concentration. Moreover, comparison of constant and dynamic setup indicated high impact of wind. In case of windless conditions circular profile of chlorine concentration around dispersion source was noticed. Wind directed the chloride cloud which dispersed accordingly to the wind direction. As expected chloride concentration decreased with altitude. 2D model allowed prediction of polluted cloud in horizontal direction, while 3D model allowed description of horizontal and vertical distribution of chlorine. It was observed that with increase of Pasquill stability class the area of chlorine dispersion had similar character for horizontal model as well as for horizontal and vertical model (3D). For the windless case circular profile of chlorine concentration around dispersion source was observed. Additionally, for the wind application the main chlorine concentration moved ahead the source of dispersion. Analysis of chlorine concentration in function of height resulted in decrease of chlorine appearance in upper level of mathematical domain.
PL
Predykcja dyspersji substancji niebezpiecznych z przypadkowych wycieków jest niezbędna w analizie ryzyka. W tym celu do opisu procesu dyspersji stosowane są różne numeryczne narzędzia. Rozwój matematycznych algorytmów umożliwia stosowanie m.in. techniki CFD na szeroką skalę. Tym samym celem niniejszej pracy było opracowanie dwuwymiarowego i trójwymiarowego modelu opisującego zjawisko dyspersji chloru z naziemnego źródła. Dla dwuwymiarowego podejścia zastosowano model Degadisa. Natomiast dla trójwymiarowego podejścia wielofazowy model VOF. Dla obu przypadków powierzchnia analizowanego obszaru wynosiła 0.1 km2. Co więcej, dla trójwymiarowego podejścia wysokość analizowanej domeny obliczeniowej wynosiła 50 m. W celu rekonstrukcji parametrów atmosferycznych uwzględniono klasy stabilności Pasquilla oraz wpływ wiatru. Dwuwymiarowy model umożliwiał analizę procesu dyspersji w płaszczyźnie poziomej, podczas gdy model trójwymiarowy umożliwiał analizę zarówno w płaszczyźnie poziomej jak i pionowej. Analiza obu modeli wskazuje, iż wzrost intensywności wiatru wydłuża zasięg chmury chloru, z jednoczesnym spadkiem jego stężenia. Co więcej, w przypadku nieuwzględnienia przepływu wiatru obserwowano kołowy profil stężenia chloru dookoła źródła dyspersji. Natomiast przepływający wiatr powodował zmniejszenie koncentracji chloru wraz z wysokością. Również zaobserwowano, iż uwzględnienie klas stabilności Pasquilla miało porównywalny efekt w przypadku podejścia dwuwymiarowego i trójwymiarowego. Uwzględnienie wiatru powodowało przemieszczenie maksymalnej wartości stężenia chloru znad źródła dyspersji. Co więcej, analiza stężenia chloru w funkcji wysokości wskazuje na zmniejszenie zawartości chloru w górnej części domeny matematycznej.
Rocznik
Strony
1035--1048
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
autor
  • The Main School of Fire Service in Warsaw
  • The Main School of Fire Service in Warsaw
  • The Main School of Fire Service in Warsaw
  • The Main School of Fire Service in Warsaw
autor
  • The Main School of Fire Service in Warsaw
  • The Main School of Fire Service in Warsaw
autor
  • The Main School of Fire Service in Warsaw
Bibliografia
  • 1. Andreinia, A., Bianchinia, C., Puggelli, S., Demoulin, F.X. (2016). Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81, 88-103.
  • 2. Dong, L., Zuo., H., Hu, L., Yang, B., Li, L., Wu, L. (2017). Simulation of heavy gas dispersion in a large indoor space using CFD model. Journal of Loss Prevention in the Process Industries, 46, 1-12.
  • 3. Ganta, S. E., Narasimhamurthyb, V. D., Skjoldb, T., Jamoisc, D.C.P. (2014). Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage. Journal of Loss Prevention in the Process Industries, 32, 286-298.
  • 4. Hanna, S. R., Hansen, O. R., Ichard, M., Strimaitis, D. (2009). CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmospheric Environment, 43(2), 262-270.
  • 5. He, B., Jiang, X.-S., Yang, G.-R., Xu, J.-N. (2017). A numerical simulation study on the formation and dispersion of flammable vapor cloud in underground confined space. Process Safety and Environmental Protection, 107, 1-11.
  • 6. Hongna, Z., Takehiko Y., Kunugi, T. (2015). Turbulence modulation of the upward turbulent bubbly flow in vertical ducts. Nuclear Engineering and Technology, 47(5), 513-522.
  • 7. Krugera, E., Emmanuel, R. (2013). Accounting for atmospheric stability conditions in urban heat island studies: The case of Glasgow, UK. Landscape and Urban Planning, 117, 112-121.
  • 8. Labovsky, J., Jelemensky, L. (2013). CFD-based atmospheric dispersion modeling in real urban environments. Chemical Papers, 67(12).
  • 9. Labovsky, J., Jelemensky, E. (2010). CFD simulations of ammonia dispersion using "dynamic" boundary conditions. Process Safety and Environmental Protection, 88(4), 243-252.
  • 10. Li, Y., Chen, D., Cheng, S., Xu, T., Huang, Q., Guo, X., Ma, X., Yang, N., Liu, X. (2015). An improved model for heavy gas dispersion using time-varying wind data: mathematical basis, physical assumptions, and case studies. Journal of Loss Prevention in the Process Industries, 36, 20-29.
  • 11. Lovreglio, R., Ronchi, E., Maragkos, G., Beji, T., Merci, B. (2016). A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling. Journal of hazardous materials, 318, 758-771.
  • 12. Mack, M., Spruijt, M.P.N. (2014). CFD dispersion investigation of CO2 worst case scenarios including terrain and release effects. Energy Procedia, 51, 363-372.
  • 13. Markiewicz, M. (2012). A review of mathematical models for the atmospheric dispersion of heavy gases. A Classic. Models. Ecol. Chem. Eng., 19(3), 297-314.
  • 14. Meroney, R.N. (2012). CFD modeling of dense gas cloud dispersion over irregular terrain. J. Wind Eng. Ind. Aerod. 104-106, 500-508.
  • 15. Ming-Liang, Z., Lib, C.W., Shen, Y.-M. (2010). A 3D non-linear k-e turbulent model for prediction of flow and mass transport in channel with vegetation. Applied Mathematical Modelling, 34(4), 1021-1031.
  • 16. Piecuch, I., Piecuch, T. (2013). Environmental Education and Its Social Effects. Rocznik Ochrona Środowiska, 15(1), 192-212.
  • 17. Polanczyk, A., Wawrzyniak, P., Zbicinski, I. (2013). CFD analysis of dust explosion relief system in the counter-current industrial spray drying tower. Drying Technology, 31(8), 881-890.
  • 18. Pontiggia, M., Derudi, M., Alba, M., Scaioni, M., Rota, R. (2010). Hazardous gas releases in urban areas: assessment of consequences through CFD modelling. Journal of hazardous materials, 176(1-3), 589-96.
  • 19. Safakar, M., Syafiie, S., Yunus, R. (2016). CFD Analysis of Indoor Chlorine Gas Dispersion Storage: Temperatures, Wind Velocities and Ventilation Effects Studies. Asean Journal Of Chemical Engineering, 16(1).
  • 20. Salamonowicz, Z., Kotowski, M., Polka, M., Barnat, W. (2015). Numerical simulation of dust explosion in the spherical 20l vessel. Bulletin of the Polish Academy of Sciences. Technical Sciences, 63(1), 289-293.
  • 21. Scargiali, F., Grisafi, F., Busciglio, A., Brucato, A. (2011). Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics. Journal of hazardous materials, 197, 285-293.
  • 22. Siddiqui, M., Jayanti, S., Swaminathan, T. (2012). CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation. Journal of hazardous materials, 209-210, 177-85.
  • 23. Sklavounos, S., Rigas, F. (2004). Validation of turbulence models in heavy gas dispersion over obstacles. Journal of hazardous materials, 108(1-2), 9-20.
  • 24. Sun, B., Utikara, R.P., Pareeka, V.K., Guob, K. (2013). Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies. Journal of Loss Prevention in the Process Industries, 26(1), 117-128.
  • 25. Thoman, D.C., Davis, M.W., O'Kula, K.R. (2005). A Comparison of EPIcode and ALOHA Calculations for Pool Evaporation and Chemical Atmospheric Transport and Dispersion. Washington Safety Management Solutions LLC, 1-15.
  • 26. Thoman, D.C., O'Kula, K.R., Laul, J.C., Davis, M.W., Knecht, K.D. (2006). Comparison of ALOHA and EPIcode for Safety Analysis Applications. Journal of Chemical Health and Safety, 13(6), 20-33.
  • 27. Tominaga, Y., Stathopoulos, T. (2009). Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k-e models. Atmospheric Environment, 43920, 3200-3210.
  • 28. Tseng, J.M., Su, T.S., Kuo, C.Y. (2012). Consequence Evaluation of Toxic Chemical Releases by ALOHA. Procedia Engineering, 45, 384-389.
  • 29. Wang, K., Liu, Z., Qian, X., Huang, P. (2017). Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. Journal of Loss Prevention in the Process Industries, 46, 13-22.
  • 30. Wawrzyniak, P., Podyma, M., Zbicinski, I., Bartczak, Z., Polanczyk, A., Rabaeva, J. (2012a). Model of Heat and Mass Transfer in an Industrial Counter- Current Spray-Drying Tower. Drying Technology, 30(11-12), 1274-1282.
  • 31. Wawrzyniak, P., Polanczyk, A., Zbicinski, I., Jaskulski, M., Podyma, M., Rabaeva, J. (2012b). Modeling of Dust Explosion in the Industrial Spray Dryer. Drying Technology, 30(15), 1720-1729.
  • 32. Xing, J., Liu, Z., Huang, P., Feng, C., Zhou, Y., Zhang, D., Wang, F. (2013). Experimental and numerical study of the dispersion of carbon dioxide plume. Journal of hazardous materials, 256-257, 40-48.
  • 33. Zieminska-Stolarska, A., Polanczyk, A., Zbicinski, I. (2015). 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir. Journal of Hydrology and Hydromechanics, 63(4), 334-341.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4e2819f-1167-4915-ae12-756a2cdf9140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.