Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The machinability of two copper alloys with lead: CuZn40Pb2 and CuSn5Zn5Pb2, was assessed. Turning tests were performed based on the selection of parameters that will result in the tool being worn out after 1 minute. Tool wear was assessed by observing dimensional and microstructural changes in the blade. When assessing machinability, power consumption, chip shape, changes in the surface layer and surface roughness were taken into account. The research aims to determine the custom machinability index of materials used in SANHA Polska. A publicly available index must be adapted to a given application, and such adaptation is often quite time-consuming. Therefore, a 1-minute test was carried out as a quick and cheap alternative to a large fleet of machines with various machining properties. The developed methodology and the results obtained are the basis for further research conducted as part of the implementation doctorate, the aim of which is to implement the production of well-machinable lead-free materials for drinking water installations, characterized by good solderability and corrosion resistance. As a result of the conducted research, the role of lead in the machining of copper alloys was identified, which is important due to European restrictions on the elimination of this element and its replacement in a way that allows for precise removal processing.
Wydawca
Czasopismo
Rocznik
Strony
53--66
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
autor
- SANHA GmbH & Co. KG, Essen, Germany
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
- SANHA Polska Sp. z o.o., Legnica, Poland
Bibliografia
- 1. Garcia P., Rivera S., Palacios M., Belzunce J., Comparative study of the parameters influencing the machinability of leaded brasses. Engineering Failure Analysis 17, 2010, 771–776.
- 2. Nobel C., Klocke F., Lung D., Wolf S., Machinability enhancement of lead-free brass alloys. Procedia CIRP2014, 14, 95–100.
- 3. Toulfatzis A. I., Pantazopoulos G. A., David C. N., Sagris D. S., Paipetis A. S., Final Heat Treatment as a Possible Solution for the Improvement of Machinability of Pb-Free Brass Alloys. Metals 8, 2018, 8, 575.
- 4. Vazdirvanidis A., Rikos A., Toulfatzis A., & Pantazopoulos G., Electron Backscatter Diffraction (EBSD) Analysis of Machinable Lead-Free Brass Alloys. Connecting Texture with Fracture. Metals 12, 2022, 569.
- 5. Davis J.R., Wrought Copper and Copper Alloys. ASM Specialty Handbook: Copper and Copper Alloys, ASM International, USA, 2001, 54.
- 6. Martyushev N., Leaded-tin bronze destruction mechanism. 2012 7th International Forum on Strategic Technology (IFOST), Tomsk, Russia, 2012, 1-4.
- 7. Maruyama T., Abé H., Hirose K., Matsubayashi R., Kobayashi T., Influence of Alloying Elements on Sulfide Formation in Lead Free Bronze Castings with Dispersed Sulfide Particles. Materials Transactions 53, 2012, 380-384.
- 8. Johansson J., Alm P., M'Saoubi R., Malmberg P., Ståhl J., Bushlya V., On the function of lead (Pb) in machining brass alloys. The International Journal of Advanced Manufacturing Technology 120, 2022, 7263 – 7275.
- 9. Amaral L., Quinta R., Silva T., Soares R., Castellanos S., Jesus A., Effect of lead on the machinability of brass alloys using polycrystalline diamond cutting tools. The Journal of Strain Analysis for Engineering Design 53, 2018, 602 - 615.
- 10. Srivatsan T., Sudarshan T., The high strain fatigue behavior of lead-containing copper alloys. Engineering Fracture Mechanics 50, 1995, 85-101.
- 11. Pathak J., Tiwari, S., On the mechanical and wear properties of copper-lead bearing alloys. Wear 155, 1992, 37-47.
- 12. Stavroulakis P., Toulfatzis A., Pantazopoulos G., Paipetis A., Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review. Metals 2022, 12, 246.
- 13. Imai H., Kosaka Y., Kojima A., Li S., Kondoh K., Umeda J., Atsumi H., Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite. Powder Technology 198, 2010, 417-421.
- 14. Taha M., El-Mahallawy N., Hammouda R., Moussa T., Gheith M., Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Engineering Journal 3, 2012, 383-392.
- 15. Schultheiss F., Johansson D., Bushlya V., Zhou J., Nilsson K., Ståhl J., Comparative study on the machinability of lead-free brass. Journal of Cleaner Production 149, 2017, 366-377.
- 16. Johansson J., Persson H., Ståhl J., Zhou J., Bushlya V., Schultheiss, F., Machinability Evaluation of Low-Lead Brass Alloys. Procedia Manufacturing 38, 2019, 1723-1730.
- 17. Schultheiss F., Windmark C., Sjöstrand S., Rasmusson M., Ståhl, J., Machinability and manufacturing cost in low-lead brass. The International Journal of Advanced Manufacturing Technology 99, 2018, 2101 - 2110.
- 18. Brans K, Kind S, Meurer M, Bergs T., Influence of the Material Production Route on the Material Properties and the Machinability of the Lead-Free Copper-Zinc-Alloy CuZn40 (CW509L). Metals 14, 2024, 747.
- 19. CNC Machining Material Machinability Chart – Machinability of Metals and Plastics, online: CNC Machining Material Machinability Chart - Machinability of Metals and Plastics | CNCLATHING, 10.06.2023.
- 20. Recommended machining parameters for copper and copper alloys, German Copper Institut (DKI), Monograph i.18.
- 21. Zachert C., Brans K., Schraknepper D., Bergs T., Assessment and Comparison of the Machinability of Innovative Copper Alloys. Conference Proceedings Copper Alloys 2022, Düsseldorf, 22. - 23. November 2022, 56-59.
- 22. Taha M. A., El-Mahallawy N. A., Gheith M. H., Hamouda R. M., Moussa T. M., Machinability of a new group of lead-free brass alloys developed for fittings and faucets. ResearchGate, January 2007.
- 23. https://www.secotools.com/dashboard/Suggest/Suggest, online: 10.06.2023
- 24. PN-EN ISO 1302:2004. Specyfikacje geometrii wyrobów (GPS). Oznaczanie struktury geometrycznej powierzchni w dokumentacji technicznej wyrobu.
- 25. Schultheiss F., Johansson D., Linde M., Tam P. L., Bushlya V., Zhou J., Nyborg L. & Ståhl J.-E., Machinability of CuZn21Si3P brass. Materials Science and Technology 32, 2016, 17, 1744-1750.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4e125a1-5ca3-4f6d-986f-8cfc2f997ee5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.