PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature dependence of the energy band gap of CuSi2P3 semiconductor using PSOPW method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is 0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively. Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse of mean bond length.
Wydawca
Rocznik
Strony
553--562
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan, Iraq
autor
  • Department of Physics, College of Science, Duhok University, Kurdistan, Iraq
autor
  • Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan, Iraq
Bibliografia
  • [1] Wang P., Ahmadpour F., Kolodiazhnyi T., Kracher A., Cranswick L., Mozharivskyj Y., Dalton T., 39 (2010), 1105.
  • [2] Passler R., J. Appl. Phys., 89 (2001), 6235.
  • [3] Benkabou K., Aoumeur F.Z., Abid H., Amrane N., Physica B, 337 (2003), 147.
  • [4] Morgan D.T., Proc. Int. Power Sources Symp., 76 (1986).
  • [5] Braun J.F., Hemler R.J., Proc. Symp. Space Nucl. Power Syst., 2 (1990), 794.
  • [6] Smith R.A., Semiconductor, 2nd ed., Cambridge University Press, Cambridge, 2003.
  • [7] Folberth O.G., Pfister H., Acta Crystallogr. A, 14 (1961), 325.
  • [8] Pamplin B.R., Omar M.S., Prog. Cryst. Growth Ch., 10 (1984), 183.
  • [9] Bhikshamaiah G., Omar M.S., Suryanarayana S.V., Cryst. Res. Technol., 29 (1994), 277.
  • [10] Omar M.S., Mater. Res. Bull., 42 (2007), 319.
  • [11] Omar M.S., J. Synth. Cryst., 27 (1998), 191.
  • [12] Bhikshamaiah G., Suryanarayana S.V., Omar M.S., Mater. Sci. Lett., 7 (1988), 1074.
  • [13] Sami S.A., Modification of OPW Method and Using it to calculate Temperature Dependence of the Energy Gap for some III-V Semiconductors, Ph.D. Thesis, Dohuk University, Kurdistan Region, Iraq, 2004.
  • [14] Abdullah T.G., Temperature Dependence of Direct and Indirect Gaps of CuGe2P3 Semiconductor, Ph.D. Thesis, Salahaddin University-Erbil, Kurdistan Region, Iraq, 2008.
  • [15] Abdullah T.G., Sol. Stat. Sci. Technol., 22 (2014), 55.
  • [16] Tsay Y.F., Gong B., Mitra S.S., Vetelino J.F., Phys. Rev. B, 6 (1972), 2330.
  • [17] Olguin D., Cantarero A., Cardona M., Phys. Status Solidi B, 220 (2000), 33.
  • [18] Herring C., Phys. Rev., 57 (1940), 1169.
  • [19] Powell J.L., Crasemann B., Quantum Mechanics, Addison-Wesley Publishing Company, Reading, USA., 1965.
  • [20] Woodruff T.O., Phys. Rev., 103 (1956), 1159.
  • [21] Joshua S.J., Symmetry Principles and Magnetic Symmetry in Solid State Physics, Adam Hilger-IOP Publishing Ltd., Bristol, England, 1991.
  • [22] Passler R., J. Appl. Phys., 88 (2000), 2570.
  • [23] Passler R., J. Appl. Phys., 90 (2001), 3956.
  • [24] Shay J.L., Phys. Rev. B, 4 (1971), 1385.
  • [25] Auvergne D., Camassel J., Mathieu H., Car-Dona M., Phys. Rev. B, 9 (1974) 5168.
  • [26] Camassel J., Auvergne D., Phys. Rev. B, 12 (1975), 3258.
  • [27] Vetelino J.F., Gaur S.P., Mitra S.S., Phys. Rev. B, 5 (1972), 2360.
  • [28] Pillai S.O., Solid State Physics, 4th ed., New Age International (P) Ltd., Publishers, New Delhi, 2001.
  • [29] Seeger P.A., Daemen L.L., Appl. Phys. A, 74 (2002), 1458.
  • [30] Colella R., Zhang Y., Sutter J.P., Ehrlich S.N., Phys. Rev. B, 63 (2000), 14202.
  • [31] Omar M.S., Mater. Res. Bull., 47 (2012), 3518.
  • [32] Dash J.G., Rev. Mod. Phys., 71 (1999), 1737.
  • [33] Omar M.S., Ph.D. Thesis, Bath Uni., England, 1985.
  • [34] Omar M.S., J. Duhok Univ., 5 (2002), 123.
  • [35] Omar M.S., Mater. Res. Bull., 42 (2007), 961.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4ddf468-0c59-438e-b31b-cd45d5596f75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.