PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of global warming on insect behaviour in agriculture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global warming and climate change are some of the most widely discussed topics in today's society, and they are of considerable importance to agriculture globally. Climate change directly affects agricultural production. On the other hand, the agricultural sector is inherently sensitive to climate conditions, and this has made the agricultural sector one of the most vulnerable sectors to the effects of global climate change. Rising CO2 levels in the atmosphere, increased temperature, and altering precipitation patterns all substantially influence agricultural insect pests and agricultural productivity. Climate change has a number of implications for insect pests. They can lead to a decreased biological control effectiveness, particularly natural enemies, increased incidence of insect-transmitted plant diseases, increased risk of migratory pest invasion, altered interspecific interaction, altered synchrony between plants and pests, increase in the number of generations, increased overwintering survival, and increase in geographic distribution. As a consequence, agricultural economic losses are a real possibility, as is a threat to human food and nutrition security. Global warming will necessitate sustainable management techniques to cope with the altering state of pests, as it is a primary driver of pest population dynamics. Future studies on the impacts of climate change on agricultural insect pests might be prioritized in several ways. Enhanced integrated pest control strategies, the use of modelling prediction tools, and climate and pest population monitoring are only a few examples.
Wydawca
Rocznik
Tom
Strony
150--153
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Jiujiang University, School of Accounting, 551 Qianjin Donglu, Jiujiang, Jiangxi, China
  • Universiti Utara Malaysia, School of Business Management, Sintok, Kedah, Malaysia
  • Moscow State University of Technology and Management named after K.G. Razumovsky (The First Cossack University), Department of Biology, Moscow, Russia
  • Moscow State University of Technology and Management named after K.G. Razumovsky (The First Cossack University), Department of Biology, Moscow, Russia
  • Udayana University, Faculty of Engineering, Denpasar, Bali, Indonesia
  • HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Faculty of Nursing, Bangkok, Thailand
  • Al-Ayen University, Faculty of Health, Dhi-Qar, Iraq
  • Al-Mustaqbal University College, Medical Laboratories Techniques Department, Babylon, Hilla, Iraq
  • Saveetha Institute of Medical and Technical Sciences, Department of Pharmacology, Chennai, India
Bibliografia
  • AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of groundwater and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35. No. 11 p. 3463–3479. DOI 10.1007/s11269-021-02887-3.
  • CANELLES Q., AQUILUÉ N., JAMES P.M., LAWLER J., BROTONS L. 2021. Global review on interactions between insect pests and other forest disturbances. Landscape Ecology. Vol. 36 p. 945–972. DOI 10.1007/s10980-021-01209-7.
  • CHEN C., HARVEY J.A., BIERE A., GOLS R. 2019. Rain downpours affect survival and development of insect herbivores: The specter of climate change? Ecology. Vol. 100(11) e02819. DOI 10.1002/ecy.2819.
  • CHRISTIAENSEN L., MARTIN W. 2018. Agriculture, structural transformation and poverty reduction: Eight new insights. World Development. Vol. 109 p. 413–416. DOI 10.1016/j.worlddev.2018.05.027.
  • COGATO A., MEGGIO F., DE ANTONI MIGLIORATI M., MARINELLO F. 2019. Extreme weather events in agriculture: A systematic review. Sustainability. Vol. 11(9), 2547. DOI 10.3390/su11092547.
  • DEUTSCH C.A., TEWKSBURY J.J., TIGCHELAAR M., BATTISTI D.S., MERRILL S.C., HUEY R.B., NAYLOR R.L. 2018. Increase in crop losses to insect pests in a warming climate. Science. Vol. 361(6405) p. 916–919. DOI 10.1126/science.aat3466.
  • DIFFENBAUGH N.S., KRUPKE C.H., WHITE M.A., ALEXANDER C.E. 2008. Global warming presents new challenges for maize pest management. Environmental Research Letters. Vol. 3(4), 044007. DOI 10.1088/1748-9326/3/4/044007.
  • FINCH D.M., BUTLER J.L., RUNYON J.B., FETTIG C.J., KILKENNY F.F., JOSE S., FRANKEL S.J., CUSHMAN S.A., COBB R.C., DUKES J.S. 2021. Effects of climate change on invasive species. In: Invasive species in forests and rangelands of the United States. Cham. Springer p. 57–83. DOI 10.1007/978-3-030-45367-1_4.
  • GELY C., LAURANCE S.G., STORK N.E. 2020. How do herbivorous insects respond to drought stress in trees? Biological Reviews. Vol. 95(2) p. 434–448. DOI 10.1111/brv.12571.
  • HARVEY J.A., HEINEN R., GOLS R., THAKUR M.P. 2020. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology. Vol. 26(12) p. 6685–6701. DOI 10.1111/gcb.15377.
  • HUSSAIN S., ULHASSAN Z., BRESTIC M., ZIVCAK M., ZHOU W., ALLAKHVER-DIEV S.I., YANG X., SAFDAR M.E., YANG W., LIU W. 2021. Photosynthesis research under climate change. Photosynthesis Research. Vol. 150 p. 5–19. DOI 10.1007/s11120-021-00861-z.
  • JABRAN K., FLORENTINE S., CHAUHAN B.S. 2020. Impacts of climate change on weeds, insect pests, plant diseases and crop yields: Synthesis. In: Crop protection under changing climate. Cham. Springer p. 189–195.
  • JACTEL H., KORICHEVA J., CASTAGNEYROL B. 2019. Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science. Vol. 35 p. 103–108. DOI 10.1016/j.cois.2019.07.010.
  • KUIPER M., CUI H.D. 2021. Using food loss reduction to reach food security and environmental objectives–a search for promising leverage points. Food Policy. Vol. 98, 101915. DOI 10.1016/j.foodpol.2020.101915.
  • LEHMANN P., AMMUNÉT T., BARTON M., BATTISTI A., EIGENBRODE S.D., JEPSEN J.U., KALINKAT G., NEUVONEN S., NIEMELÄ P., TERBLANCHE J.S. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment. Vol. 18(3) p. 141–150. DOI 10.1002/fee.2160.
  • LINCOLN D.E., FAJER E.D., JOHNSON R.H. 1993. Plant-insect herbivore interactions in elevated CO 2 environments. Trends in Ecology & Evolution. Vol. 8(2) p. 64–68. DOI 10.1016/0169-5347(93)90161-H.
  • MA C.-S., MA G., PINCEBOURDE S. 2021. Survive a warming climate: Insects responses to extreme high temperatures. Annual Review of Entomology. Vol. 66 p. 163–184. DOI 10.1146/annurev-ento-041520-074454.
  • MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., AKBARI VARIANI H. 2021a. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.
  • MOLAJOU A., POULADI P., AFSHAR A. 2021b. Incorporating social system into water-food-energy nexus. Water Resources Management. Vol. 35. No. 13 p. 4561–4580. DOI 10.1007/s11269-021-02967-4.
  • MÖLLER F. 1963. On the influence of changes in the CO 2 concentration in air on the radiation balance of the earth’s surface and on the climate [online]. Journal of Geophysical Research. Vol. 68(13) p. 3877–3886. [Access 25.09.2021]. Available at: http://www.patarnott.com/SimpleScience/docs/MOLLER_1963_CO2_Not- ForcingClimate.pdf
  • NOURANI V., RAZZAGHZADEH Z., BAGHANAM A. H., MOLAJOU A. 2019. ANN-based statistical downscaling of climatic parameters Rusing decision tree predictor screening method. Theoretical and Applied Climatology. Vol. 137. No. 3 p. 1729–1746. DOI 10.1007/s00704-018-2686-z.
  • NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.
  • PANDA A., SAHU N. 2019. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmospheric Science Letters. Vol. 20(10), e932. DOI 10.1002/asl.932.
  • PASTOR A.V., PALAZZO A., HAVLIK P., BIEMANS H., WADA Y., OBERSTEINER M., KABAT P., LUDWIG F. 2019. The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability. Vol. 2(6) p. 499–507. DOI 10.1038/s41893-019-0287-1.
  • PATHAK T.B., MASKEY M.L., RIJAL J.P. 2021. Impact of climate change on navel orangeworm, a major pest of tree nuts in California. Science of The Total Environment. Vol. 755, 142657. DOI 10.1016/j.scitotenv.2020.142657.
  • RASCHE L. 2021. Estimating pesticide inputs and yield outputs of conventional and organic agricultural systems in Europe under climate change. Agronomy. Vol. 11(7), 1300. DOI 10.3390/agronomy11071300.
  • SAXENA P., SINGH A.K., GUPTA R. 2021. Adverse environment and pest management for sustainable plant production. In: Plant Performance under Environmental Stress. Cham. Springer p. 535–557. DOI 10.1007/978-3-030-78521-5_21.
  • STACEY D.A., FELLOWES M.D. 2002. Influence of elevated CO 2 on interspecific interactions at higher trophic levels. Global Change Biology. Vol. 8(7) p. 668–678. DOI 10.1046/j.1365-2486.2002.00506.x.
  • TAN S.-L., HUANG X., LI W.-Q., ZHANG S.-B., HUANG W. 2021. Elevated CO 2 concentration alters photosynthetic performances under fluctuating light in Arabidopsis thaliana. Cells. Vol. 10(9), 2329. DOI 10.3390/cells10092329.
  • ZENG J., LIU Y., ZHANG H., LIU J., JIANG Y., WYCKHUYS K.A., WU K. 2020. Global warming modifies long-distance migration of an agricultural insect pest. Journal of Pest Science. Vol. 93(2) p. 569–581. DOI 10.1007/s10340-019-01187-5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4dc82aa-5aad-4131-bc2f-40e85811c991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.