PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of biomonitoring is assessment of environment condition. Biomonitoring studies with the use of mosses focus mainly on analytes accumulation and determining elements’ concentrations in the study area. It is often forgotten that a bioindicator should be alive during biomonitoring studies (which can be determined by, e.g., analysis of chlorophyll content). The objective of the carried out research was an assessment of the influence of selected heavy metals concentration: Ni, Cu, Zn, Cd and Pb accumulated by Pleurozium schreberi mosses during 3-month exposition within active biomonitoring, on their vitality, assessed by an analysis of a and b chlorophyll concentrations. The studies were also carried out in laboratory conditions, where the content of the dyes was determined with the aid of a UV-Vis spectrophotometer, in mosses reacting with solutions of various concentrations of the analysed metals. The content of elements in mosses after exposition and in solutions prior and after sorption were determined with the use of atomic absorption spectrometry (AAS) in a flame atomiser. After the carried out studies it was determined that mosses, during 12-week long exposition, accumulated heavy metals, which did not clearly influence the changes in chlorophyll content. The carried out studies prove that heavy metals are not the only and determining factor, which influences chlorophyll content in mosses as well as the bioindicator’s vitality in the conditions of environmental stress.
Rocznik
Strony
591--601
Opis fizyczny
Bibliogr. 49 poz., wykr., tab.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
Bibliografia
  • [1] Rajfur M. Algae - Heavy metals biosorbent. Ecol Chem Eng S. 2013;20(1):23-40. DOI: 10.2478/eces-2013-0002.
  • [2] Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res. 2019;26:29620-38. DOI: 10.1007/s11356-019-06270-z.
  • [3] Jóźwiak MA, Jóźwiak M. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecol Chem Eng S. 2009;16:323-34. Available from: https://drive.google.com/file/d/16kMQeMGRupbWPc4yhlKh48Uy2wH3g2vG/view.
  • [4] Zinicovscaia I, Urošević MA, Vergel K, Vieru E, Frontasyeva MV, Povar I, et al. Active moss biomonitoring of trace elements air pollution in Chisinau, Republic of Moldova. Ecol Chem Eng S. 2018;25:361-72. DOI: 10.1515/eces-2018-0024.
  • [5] Agnan Y, Séjalon-Delmas N, Claustres A, Probst A. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci Total Environ. 2015;529:285-96. DOI: 10.1016/j.scitotenv.2015.05.083.
  • [6] Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, et al. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep. 2019;9:1-11. DOI: 10.1038/s41598-019-52554-2.
  • [7] Mondal NK, Kundu M. Biosorption of fluoride from aqueous solution using lichen and its Ca-pretreated biomass. Water Conserv Sci Eng. 2016;1:143-60. DOI: 10.1007/s41101-016-0009-8.
  • [8] Konopka Z, Świsłowski P, Rajfur M. Biomonitoring of atmospheric aerosol with the use of Apis mellifera and Pleurozium schreberi. Chem Didact Ecol Metrol. 2019;24:107-16. DOI: 10.2478/cdem-2019-0009.
  • [9] Yakovleva EV, Gabov DN, Beznosikov VA, Kondratenok BM. Accumulation of polycyclic aromatic hydrocarbons in soils and mosses of southern tundra at different distances from the thermal power plant. Eurasian Soil Sci. 2018;51:528-35. DOI: 10.1134/S1064229318030134.
  • [10] Roblin B, Aherne J. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Sci Total Environ. 2020;715:136973. DOI: 10.1016/j.scitotenv.2020.136973.
  • [11] Rühling A, Tyler G. An ecological approach to the lead problem. Bot Not. 1968;121:3.
  • [12] Napa Ü, Kabral N, Liiv S, Asi E, Timmusk T, Frey J. Current and historical patterns of heavy metals pollution in Estonia as reflected in natural media of different ages: ICP Vegetation, ICP Forests and ICP Integrated Monitoring data. Ecol Indic. 2015;52:31-9. DOI: 10.1016/j.ecolind.2014.11.028.
  • [13] ICP Vegetation. Heavy metals, nitrogen and POPs in European mosses: 2020 Survey. 2020. Available from: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf.
  • [14] Fernández JA, Boquete MT, Carballeira A, Aboal JR. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci Total Environ. 2015;517:132-50. DOI: 10.1016/j.scitotenv.2015.02.050.
  • [15] Ares A, Fernández JA, Carballeira A, Aboal JR. Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values. Atmos Environ. 2014;94:496-507. DOI: 10.1016/j.atmosenv.2014.05.066.
  • [16] Vuković G, Aničić Uroševic M, Razumenić I, Kuzmanoski M, Pergal M, Škrivanj S, et al. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos Environ. 2013;85:31-40. DOI: 10.1016/j.atmosenv.2013.11.053.
  • [17] Markert B. From biomonitoring to integrated observation of the environment - The multi-markered bioindication concept. Ecol Chem Eng S. 2008;15:315-33. Available from: http://tchie.uni.opole.pl/freeECE/S_15_3/Markert_15(S3).pdf.
  • [18] Capozzi F, Sorrentino MC, Di Palma A, Mele F, Arena C, Adamo P, et al. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol Indic. 2020;108:105727. DOI: 10.1016/j.ecolind.2019.105727.
  • [19] Debén S, Fernández JA, Carballeira A, Aboal JR. Using devitalized moss for active biomonitoring of water pollution. Environ Pollut. 2016;210:315-22. DOI: 10.1016/j.envpol.2016.01.009.
  • [20] Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Luigi Nimis P. Oven-dried mosses as tools for trace element detection in polluted waters: A preliminary study under laboratory conditions. Plant Biosyst. 2011;145:832-40. DOI: 10.1080/11263504.2011.580790.
  • [21] Chen Y, Yuan M, Zhang H, Zeng X, Liu H, Du X. Influences of cu and cr stress on antioxidant system and chlorophyll fluorescence in terrestrial moss taxiphyllum taxirameum. Fresenius Environ Bull. 2015;24:2211-9. https://www.prt-parlar.de/download/.
  • [22] Rastogi A, Antala M, Gąbka M, Rosadziński S, Stróżecki M, Brestic M, et al. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Sci Rep. 2020;10:1-9. DOI: 10.1038/s41598-020-65032-x.
  • [23] Shakya K, Chettri MK, Sawidis T. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol. 2008;54:412-21. DOI: 10.1007/s00244-007-9060-y.
  • [24] Kováčik J, Klejdus B, Štork FŠ, Hedbavny J. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application. J Hazard Mater. 2012;239-240:175-82. DOI: 10.1016/j.jhazmat.2012.08.062.
  • [25] Krzesłowska M, Rabęda I, Lewandowski M, Samardakiewicz S, Basińska A, Napieralska A, et al. Pb induces plant cell wall modifications - In particular - The increase of pectins able to bind metal ions level. E3S Web Conf. 2013;1:2-4. DOI: 10.1051/e3sconf/20130126008.
  • [26] Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, et al. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One. 2017;12:1-19. DOI: 10.1371/journal.pone.0189726.
  • [27] Aydoğan S, Erdağ B, Yildiz Aktaş L. Bioaccumulation and oxidative stress impact of Pb, Ni, Cu, and Cr heavy metals in two bryophyte species, Pleurochaete squarrosa and timmiella barbuloides. Turk J Botany. 2017;41:464-75. DOI: 10.3906/bot-1608-33.
  • [28] Lin X, Chen L, Hu X, Feng S, Huang L, Quan G, et al. Toxicity of graphene oxide to white moss Leucobryum glaucum. RSC Adv. Royal Soc Chem. 2017;7:50287-93. DOI: 10.1039/c7ra10096e.
  • [29] Pradhan A, Kumari S, Dash S, Biswal DP, Dash AK, Panigrahi KCS. Heavy metal absorption efficiency of two species of mosses (Physcomitrella patens and Funaria hygrometrica) studied in mercury treated culture under laboratory condition. IOP Conf Ser Mater Sci Eng. 2017;225. DOI: 10.1088/1757-899X/225/1/012225.
  • [30] Ogunkunle CO, Ziyath AM, Rufai SS, Fatoba PO. Surrogate approach to determine heavy metal loads in a moss species - Barbula lambaranensis. J King Saud Univ. 2016;28:193-7. DOI: 10.1016/j.jksus.2015.11.002.
  • [31] González AG, Pokrovsky OS. Metal adsorption on mosses: Toward a universal adsorption model. J Colloid Interface Sci. 2014;415:169-78. DOI: 10.1016/j.jcis.2013.10.028.
  • [32] Boquete MT, Aboal JR, Carballeira A, Fernández JA. Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ. 2017;593-594:567-70. DOI: 10.1016/j.scitotenv.2017.03.196.
  • [33] Liepiņa L, Ievinsh G. Potential for fast chlorophyll a fluorescence measurement in bryophyte ecophysiology. Est J Ecol. 2013;62:137-49. DOI: 10.3176/eco.2013.2.05.
  • [34] Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2020. DOI: 10.1007/s11356-020-11484-7.
  • [35] Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11:591-2. Available from: https://portlandpress.com/biochemsoctrans/article-abstract/11/5/591/57549/Determinations-of-total-carotenoids-and?redirectedFrom=fulltext.
  • [36] Thermo Fisher Scientific Inc. iCE 3000 Series AA Spectrometers Operator’s Manual. 2011;44:1-1 to 7-18. Available from: www.thermoscientific.com
  • [37] Krakovská AS, Svozilík V, Zinicovscaia I, Vergel K, Jančík P. Analysis of spatial data from moss biomonitoring in czech-polish border. Atmosphere. 2020;11:1-26. DOI: 10.3390/atmos11111237.
  • [38] Kosior G, Přibylová P, Vaňková L, Kukučka P, Audy O, Klánová J, et al. Bioindication of PBDEs and PCBs by native and transplanted moss Pleurozium schreberi. Ecotoxicol Environ Saf. 2017;143:136-42. DOI: 10.1016/j.ecoenv.2017.05.025.
  • [39] Samecka-Cymerman A, Kosior G, Kolon K, Wojtuń B, Zawadzki K, Rudecki A, et al. Pleurozium schreberi as bioindicator of mercury pollution in heavily industrialized region. J Atmos Chem. 2013;70:105-14. DOI: 10.1007/s10874-013-9256-7.
  • [40] Rumyantsev IV, Dunaev AM, Frontasyeva MV, Ostrovnaya TM. Interspecies comparison of elemental content in moss From Ivanovo region determined by NAA and AAS. XXI Int Semin оn Interact Neutrons with Nucl (Fundamental Interact Neutrons, Nucl Struct Ultracold Neutrons, Relat Top Alushta, Ukr. 2013. Available from: http://isinn.jinr.ru/proceedings/isinn-21/pdf/rumyantsev.pdf.
  • [41] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-65. DOI: 10.1016/j.biortech.2007.04.036.
  • [42] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.
  • [43] Lequy E, Saby NPA, Ilyin I, Bourin A, Sauvage S, Leblond S. Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters. Sci Total Environ. 2017;590-591:602-10. DOI: 10.1016/j.scitotenv.2017.02.240.
  • [44] Varela Z, Roiloa SR, Fernández JA, Retuerto R, Carballeira A, Aboal JR. Physiological and growth responses of transplants of the moss Pseudoscleropodium purum to atmospheric pollutants. Water Air Soil Pollut. 2013;224. DOI: 10.1007/s11270-013-1753-4.
  • [45] Urošević MA, Vuković G, Jovanović P, Vujičić M, Sabovljević A, Sabovljević M, et al. Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban Urban Green. 2017;25:1-10. DOI: 10.1016/j.ufug.2017.04.016.
  • [46] Chen YE, Wu N, Zhang ZW, Yuan M, Yuan S. Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. Front Plant Sci. 2019;10:1-7. DOI: 10.3389/fpls.2019.00035.
  • [47] Charron AJ, Quatrano RS. Between a rock and a dry place: The water-stressed moss. Mol Plant. 2009;2:478-86. DOI: 10.1093/mp/ssp018.
  • [48] Stanković JD, Sabovljević AD, Sabovljević MS. Bryophytes and heavy metals: A review. Acta Bot Croat. 2018;77:109-18. DOI: 10.2478/botcro-2018-0014.
  • [49] Sokołowska K, Turzańska M, Nilsson MC. Symplasmic and apoplasmic transport inside feather moss stems of Pleurozium schreberi and Hylocomium splendens. Ann Bot. 2017;120(5):805-17. DOI: 10.1093/aob/mcx102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4d67a07-dc0e-45e7-ab14-d84bdf1c42ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.