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On the Sound Radiation From
a Circular Hatchway

Jorge P. Arenas

Institute of Acoustics, University Austral of Chile, Valdivia, Chile

Low-frequency sound radiation from vibrating plates is a practical problem often found in engineering
applications. In this article, the sound radiation from a circular hatchway is examined using a discrete
approach based in the acoustic resistance matrix. Since this matrix can be combined with the volume velocity
vector on the discretized vibrating circular surface, the sound radiation efficiency can be estimated through
matrix approaches. The limitation of the approach is discussed by using benchmark results presented in
previous works. The method produces acceptable results in low frequencies when the response of the plate is
dominated by one low structural mode. When the response of more than one mode is significant, the method
gives good estimation of the total sound power just for frequencies up to the first resonance. However, the

method can be applied to complex and irregular vibrating plane surfaces.
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1. INTRODUCTION

Low-frequency sound radiation from vibrating
structures can produce exposure of workers to
noise levels that involve a risk of both auditory
and nonauditory health effects. In addition, low-
frequency noise of high intensity might cause
damage to other adjacent structures. In particular,
the vibration of a plate and its interaction with
the surrounding fluid medium will result in a
coupled problem involving radiation of noise.
Since circular plates are commonly found in
engineering applications, there is a large body of
research on the modeling and engineering design
of circular plates [1, 2]. In particular, there have
been many studies on predicting the sound power
radiated from a circular plate [3]. In a recent
article, Rdzanek, Rdzanek, Engel, et al. reported
a motivating study on the modal low-frequency
noise generated by a vibrating elastically supported
circular plate embedded into a flat infinite baffle
[4]. Their approach allows one to estimate the
low-frequency sound power radiated from both
axisymmetric and asymmetric modes, and virtually
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for any uniform boundary condition at the contour
of the plate. They applied the technique to some
hatchway covers mounted on a ship deck as a
particular example of such a circular plate. In
this article, a different approach is presented to
analyze the same problem. The approach is based
on the acoustic radiation resistance matrix and it is
completely discrete in nature, so it can be readily
implemented into computer codes. In previous
works, this method was used to estimate sound
radiation efficiency of rectangular plates [5].
Using Rdzanek et al.’s examples as benchmark
results, the limitations of the discrete technique are
discussed and the advantages of Rdzanek et al.’s
approach become more evident.

2. BASIC EQUATIONS

2.1. Transverse Vibration of a Circular
Plate

Leissa [6] and Meirovitch [7] give the equation of
motion for the small displacement w(r, ¢, t) of a
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thin, isotropic circular plate of radius a, which is
excited by a force f(r, o, 1):

2
DV*w+ ph% = f(r,0,1), )

where p—density of the plate, i—thickness, D
= ER’/12(1 — v*)—bending stiffness of the plate,
E—its Young’s modulus, v—its Poisson ratio,
and V'—the square of the Laplacian operator
in polar co-ordinates. If the plate is excited by a
time-harmonic point force of circular frequency
o, at locations r = a, and ¢ = ¢,

Jjot
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flr,o.0= Or

8(r—ag)d(@=9y), (2)

where F\,—force amplitude of the excitation.

Assuming
Equation 1, ie., w(r, 9, 1) = W(r, ¢)¢'”, and
following Rdzanek et al.’s [4] notation, the forced

time-harmonic solution of

harmonic response of the plate can be written as
the modal superposition

W)= S [eome +cows ], 3)
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J ., I —mth order Bessel and modified Bessel

m> -m

functions, respectively,

k::m = (Dfnnph/D’ (5)
o,,,—corresponding eigenfrequency of mode
(m, n),
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and k, = ®’ph/ D is the structural wavenumber.
The constants A, and C,, in Equation 4 are
determined from the boundary conditions of
the circular plate. In Equations 6, the internal
damping loss factor of the plate has been
neglected.

Uniform boundary conditions at the contour of
the plate are expressed with Equations 7-8 [6]:

M, (@) =K, S @) )
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Vr(a’ (P) = _KWW(a’ (P)’ (8)

where M,—bending moment of the plate’s
edge, V,—force resisting transverse deflection
of the plate edge, and K|, K, —corresponding
distributed boundary stiffness values. Dimension-
less boundary stiffness values are defined as
q= Kwa3/D and p = K, a/D. Frequency equation
for the problem is obtained by substituting the
solution of Equation 1 with f(r, ¢, f) = 0 (free
vibrations),

Wmn<r,<p)={‘;f;:$}wm<r>, ©)

into Equations 7-8 (see Equation 11 in Rdzanek et
al. [4]). The values at which a resonance of mode
(m, n) takes place are given with the eigenvalue
X = ky,na. Therefore, the time-harmonic normal
velocity of mode (1, n) on the surface of the plate
is given with V, (v, @) =jo,,,W,..(¥, ®).

Equation 3 can be written in matrix form by
truncating the infinite series to a finite value of
m =M and n = N. Therefore,

W(r,p)=c"®b, (10)

where c¢—column vector of length M + 1 whose
elements are cos m(¢ — ¢,), b—column vector of
length N whose elements are all ones, and ®—M
+ 1 x N matrix whose elements are

— Wmn (r)Wmn (aO)

. (11)
(K /ey ) =1

mn

2.2. Sound Power Radiated

Considering that the circular plate is mounted
flush into an infinite baffle and that the vibrating
plate surface is divided into N’ small elements of
area S, with k =1, 2, ..., N’, the local specific
acoustic radiation impedance can be estimated on
the surface as

Zy=p1V, (12)

where p—sound pressure amplitude at point
i due to a point source located at point k, and
normal velocity V.

If we assume that the characteristic length
of the surface elements is small compared to a
typical acoustic wavelength, the pressure and
velocity can be considered constant over each



element and can be represented by an average
value. Therefore, Equation 12 can be written as

Zy =p; !l u, (12)

where u, = IV .dS, is the volume velocity at
point k. Therefore, using the reciprocity principle
and the definition of sound power, it can be
shown that the average sound power can be
estimated by Arenas and Crocker [5]:

I1=1u"Ru, (13)

where u—N’ x 1 column vector of volume
velocities, H—Hermitian, and R —symmetric
N’ x N’ acoustic resistance matrix whose elements
are given by the real part of Equation 12.

An approximate low-frequency formula for
calculating the elements of R when fluid loading
is neglected is given by Berkhoff [8]:

2
pOCk l=k
R,={ 2T . (14
Pk Gnkd ik
2nd

where p,—density of the fluid, c—speed of
sound, k—wavenumber of the sound, and
d—distance between the center points of
elements i and k. An important observation is that
R depends neither on the velocity distribution
on the plate nor on the boundary conditions.
Therefore, computation of R is needed just once
per frequency and, consequently, data can be
stored for reusing, reducing the computational
cost.
Now, the sound radiation efficiency is

I
- pocS<V2> ’

where S—total surface of the plate and (V2>—

(&)

15)

space-averaged mean square normal vibration
velocity amplitude, defined as

1 2
<V2>:E£|V| ds.
In the rest of this paper, when the sound

radiation is produced by a single mode (m, n) the
sound radiation efficiency will be denoted as o,,,,,.

(16)
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2.3. Discretization of a Circular Plate

Implementation of the computational codes
requires partition of the total surface of the
circular plate into small elements of equal area.
However, transformation to a classical polar co-
ordinate system will produce surface elements
of different area. Therefore, to discretize a
circular surface of radius a, into small elements
of equal area, the surface is divided first into L
equally spaced concentric rings [9]. Thus, the
co-ordinates of the center point of each element
are r; = a(2i — 1)/2L and ¢, = n(2i — 1)/42i - 1),
wherei=1,2,...,Landj=1,2,...,4Q2i-1).
This discretization produces a total of 417
elements having a surface AS = n(a/L)2/4. An
example using L = 10 is shown in Figure 1.

Figure 1. Example of a discretization of a
circular surface into small elements of equal
area. The center point of each discrete element
is indicated by a cross.

On the other hand, Equation 16 can be
estimated with

412
<V2> _£Z|uj|2 :jz—I;;uHu. (17)

- onla’ =
3. NUMERICAL EXAMPLES
In this section some numerical examples

of circular plates are presented. All the
computations were performed using programs
written in Matlab® version 7.1. In addition, it has

been assumed that the circular baffled plate is
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radiating sound into air (p, = 1.21 kg/m3), so the
plate response is not significantly affected by the
surrounding environment.

In Rdzanek et al. [4] an exact integral expression
for the sound radiation efficiency related to
the mode (m, n) is derived from its Hankel
representation (see Equation 21 of Rdzanek et
al.). Evidently, sound radiation efficiency may be
dependent on the particular boundary condition
at the edge of the circular plate, which can be
defined through the appropriate values of p
and ¢. An interesting result is to plot the sound
radiation efficiency of some fundamental modes
for some classical boundary conditions. Figure 2
shows the results of sound radiation efficiency
of the lowest structural modes of a circular plate
of radius @ = 0.3 m and thickness 1 = 6 x 10~ m,
made of steel (E = 210 GPa, v = 0.3,
p = 7850 kg/m’) which is clamped (p = % and
q = ), simply-supported (p = 0 and g = o), free
(p =0 and g = 0), and guided (p = c© and g = 0).
In computing the results shown in Figure 2, the
exact integral representation has been used. For
making a comparison, sound radiation is plotted
as a function of the dimensionless ratio fif,,
where f,. is the critical frequency of the plate. The
critical frequency is defined as the frequency at

which the propagation speed of the bending wave
in the plate is equal to the speed of sound in the
air (¢ = 343 m/s).

The results are quite similar to those obtained
for square plates [5]. As expected, the radiation
efficiency approaches unity for frequencies at and
above f.. It should also be noted that well below
the critical frequency, the radiation efficiency
is larger in the case of a simply-supported plate
but the difference is slightly over 1 dB. Similar
observation can be made from previous works
on rectangular plates [10], where in the low-
frequency range plates with edges that are more
constrained do not always have larger radiation
efficiencies than plates with edges that are less
constrained. However, there is a significant
difference in sound radiation efficiency for
guided and free circular plates. For very low
frequencies, a clamped circular plate could have
a radiation efficiency which is more than 50 dB
greater than that of a free plate.

Figures 3—4 show the results of the modal
radiation efficiency for some structural modes
of a circular plate having a uniform elastic
boundary condition defined by ¢ = 10 and
p = 100. The modal radiation efficiencies were
calculated using the acoustic resistance matrix

a free

1

0.1 1.0
f,

c

Figure 2. Radiation efficiency (o) of the lowest mode of a simply-supported (S-S), clamped, guided,

and free circular plate as a function of ff..
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Figure 3. Radiation efficiency (o,,,) for a number of modes of a circular plate of g = 10 and p = 100.

Symbols indicate the exact integral values.
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Figure 4. Radiation efficiency (o,,,) for a number of modes of a circular plate of g = 10 and p = 100.

Symbols indicate the exact integral values.

(Equations 13-16) and they are plotted as a
function of the dimensionless ratio k/k,,. A
number L = 20 was used in the discretization.
For comparison, modal radiation efficiencies
were also computed using the exact integral
representation and they are displayed as symbols
in the same plot. There is good agreement with
the curves presented in the literature (Figure 1 of
Rdzanek et al. [4]) for those modes having A,
lower than ~30. The low frequency estimation
deteriorates for modes (10, 10) and (11, 10) which
have A, =43.4 and A, = 44.8, respectively. It is

clear that for frequencies well below k = k,,,, the
efficiency of mode (1,1) is large compared with
the efficiencies of all the other modes.

Although the acoustic resistance matrix method
does not consider the intermodal efficiency, the
total sound power radiated from a circular plate
can be estimated for very low frequencies using

Equation 15 and 17. From Equation 15 we obtain
H:pOcSc<V2>. (18)

Now, for frequencies below the first resonance,
o can be approximated by 4Sf ’/c? [11], where f'is
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the frequency (®/2m). Above the first resonance
and up to 3¢/P, where P is the perimeter of the
plate, there are formulae for certain particular
boundary conditions, and it is well-known that for
a simply-supported square plate, ¢ = 4n2D/czSps,
where p, is the plate surface density. The space-
averaged mean square normal vibration velocity
amplitude may be estimated using Equation 17.
As an example, Rdzanek et al.’s [4] application
of a circular hatchway is computed using
Equation 18 for a uniform elastic boundary
condition defined again by ¢ = 10 and p = 100.
It is assumed that the hatchway covers are
made of three different materials: polystyrene
(E=3.6GPa,v=0.24,p=1050 kg/m3), hardened
glass (E =72 GPa, v = 0.24, p = 2900 kg/m3),
and steel (£ =210 GPa,v=0.3, p=7850 kg/m3).
The radius of the plate is a = 0.3 m and the
thickness is 4 = 6 x 10~ m. The final aim of the
example was to select the hatchway cover that
produces the lowest sound power level when
the hatchway is subject to an harmonic force
applied at a,= 0.15 m (to assure its asymmetric
excitation) whose amplitude is F, = 25 na” N.
Computation of the normal velocity vectors is
made through the matrix Equation 10. Since
Equation 10 can be efficiently computed
using Matlab®, a large number of modes can
be considered in the estimation. In this case,

M = N = 11. For computing the sound power
at frequencies above the first resonance, the
expression for an equivalent simply-supported
square plate has been used. Figure 5 shows the
results of sound power level as a function of ka
of the circular hatchway.

Although it is difficult to make a direct
comparison with the results presented in Rdzanek
et al.’s Figure 4 [4] because there is a plotting
error in the dimensionless frequency axis,
some tendencies can be observed. Obviously,
the sound power radiated from the hatchway
reaches high levels at resonance. If we divide
the axis scale of Rdzanek et al.’s Figure 4 by 20,
we get quite similar results for frequencies up
to the first resonance of each sample plate. The
results are not as good for frequencies above the
first resonance, where the effect of intermodal
efficiency might be important. It seems that the
matrix approach underestimates the sound power
radiated above the first resonance. Here, Rdzanek
et al.’s method becomes quite powerful and
efficient. However, the discrete method allows
one to select the most silent plate (the one made
of steel) for frequencies such that ka < 0.15,
where the sound power level is lower than 40 dB.
Some authors have suggested that for plates
radiating under light fluid loading the influence
of intermodal radiation may be neglected and, to

Figure 5. Results of the total sound power level (M, = 10
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a first approximation, the radiated sound power of
a plate is the sum of the power radiated by each
mode separately [12]. However, according to
Rdzanek et al.’s results, this is not true in this case
for frequencies above the first resonance. Clearly,
the matrix approach could give better results for
higher frequencies, although its applicability will
be limited by the number of discrete elements.

4. CONCLUDING REMARKS

A discrete approach to study the low-frequency
sound radiation from a circular hatchway has
been presented. From comparison with some
benchmark results reported in the literature,
we observe that the discrete method works fine
in the low-frequency range when the response
of the plate is dominated by one mode, i.e., at
resonance. When the response of more than
one mode is significant, the method gives good
estimation of the sound radiation for frequencies
up to the first resonance. Above that frequency,
Rdzanek et al’s [4] method appears more
convenient for numerical computations. However,
despite the limitations, the discrete method could
be combined with other numerical methods, such
as finite elements, to estimate the sound radiation
from complex and irregular plane surfaces.
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