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On the Sound Radiation From  
a Circular Hatchway

Jorge P. Arenas

Institute of Acoustics, University Austral of Chile, Valdivia, Chile

Low-frequency sound radiation from vibrating plates is a practical problem often found in engineering 
applications. In this article, the sound radiation from a circular hatchway is examined using a discrete 
approach based in the acoustic resistance matrix. Since this matrix can be combined with the volume velocity 
vector on the discretized vibrating circular surface, the sound radiation efficiency can be estimated through 
matrix approaches. The limitation of the approach is discussed by using benchmark results presented in 
previous works. The method produces acceptable results in low frequencies when the response of the plate is 
dominated by one low structural mode. When the response of more than one mode is significant, the method 
gives good estimation of the total sound power just for frequencies up to the first resonance. However, the 
method can be applied to complex and irregular vibrating plane surfaces. 
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1. INTRODUCTION

Low-frequency sound radiation from vibrating 
structures can produce exposure of workers to 
noise levels that involve a risk of both auditory 
and nonauditory health effects. In addition, low-
frequency noise of high intensity might cause 
damage to other adjacent structures. In particular, 
the vibration of a plate and its interaction with 
the surrounding fluid medium will result in a 
coupled problem involving radiation of noise. 
Since circular plates are commonly found in 
engineering applications, there is a large body of 
research on the modeling and engineering design 
of circular plates [1, 2]. In particular, there have 
been many studies on predicting the sound power 
radiated from a circular plate [3]. In a recent 
article, Rdzanek, Rdzanek, Engel, et al. reported 
a motivating study on the modal low-frequency 
noise generated by a vibrating elastically supported 
circular plate embedded into a flat infinite baffle 
[4]. Their approach allows one to estimate the 
low-frequency sound power radiated from both 
axisymmetric and asymmetric modes, and virtually 

for any uniform boundary condition at the contour 
of the plate. They applied the technique to some 
hatchway covers mounted on a ship deck as a 
particular example of such a circular plate. In 
this article, a different approach is presented to 
analyze the same problem. The approach is based 
on the acoustic radiation resistance matrix and it is 
completely discrete in nature, so it can be readily 
implemented into computer codes. In previous 
works, this method was used to estimate sound 
radiation efficiency of rectangular plates [5]. 
Using Rdzanek et al.’s examples as benchmark 
results, the limitations of the discrete technique are 
discussed and the advantages of Rdzanek et al.’s 
approach become more evident. 

2. BASIC EQUATIONS

2.1. Transverse Vibration of a Circular 
Plate

Leissa [6] and Meirovitch [7] give the equation of 
motion for the small displacement w(r, φ, t) of a 
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thin, isotropic circular plate of radius a, which is 
excited by a force f(r, φ, t): 

(1)

where ρ—density of the plate, h—thickness, D 
= Eh3/12(1 – v2)—bending stiffness of the plate, 
E—its Young’s modulus, v—its Poisson ratio, 
and ∇4—the square of the Laplacian operator 
in polar co-ordinates. If the plate is excited by a 
time-harmonic point force of circular frequency 
ω, at locations r = a0 and φ = φ0, 

(2)

where F0—force amplitude of the excitation. 
Assuming time-harmonic solution of 

Equation 1, i.e., w(r, φ, t) = W(r, φ)ejωt, and 
following Rdza nek et al.’s [4] notation, the forced 
harmonic response of the plate can be written as 
the modal superposition

(3)

where  

(4)

Jm, Im—mth order Bessel and modified Bessel 
functions, respectively, 

(5)

ωmn—corresponding eigenfrequency of mode 
(m, n), 

(6)

and                  is the structural wavenum ber. 
The constants Amn and Cmn in Equation 4 are 
determined from the boundary conditions of 
the circular plate. In Equations 6, the internal 
damping loss factor of the plate has been 
neglected.

Uniform boundary conditions at the contour of 
the plate are expressed with Equations 7–8 [6]:

(7)

(8)

where Mr—bending moment of the plate’s 
edge, Vr—force resisting transverse deflection 
of the plate edge, and Kψ, Kw—corresponding 
distributed boundary stiffness values. Dimension-
less boundary stiffness values are defined as 
q = Kwa3/D and p = Kψa/D. Frequency equation 
for the problem is obtained by substituting the 
solution of Equation 1 with f(r, φ,  t) = 0 (free 
vibrations),

(9)

into Equations 7–8 (see Equation 11 in Rdzanek et 
al. [4]). The values at which a resonance of mode 
(m, n) takes place are given with the eigenvalue 
λmn = kmna. Therefore, the time-harmonic normal 
velocity of mode (m, n) on the surface of the plate 
is given with Vmn(r, φ) = jωmnWmn(r, φ). 

Equation 3 can be written in matrix form by 
truncating the infinite series to a finite value of 
m = M and n = N. Therefore,

(10)

where c—column vector of length M + 1 whose 
elements are cos m(φ – φ0), b—column vector of 
length N whose elements are all ones, and Φ—M 
+ 1 × N matrix whose elements are

(11) 

2.2. Sound Power Radiated

Considering that the circular plate is mounted 
flush into an infinite baffle and that the vibrating 
plate surface is divided into N’ small elements of 
area Sk, with k = 1, 2, … , N’, the local specific 
acoustic radiation impedance can be estimated on 
the surface as

(12)

where pi—sound pressure amplitude at point 
i due to a point source located at point k, and 
normal velocity Vk.

If we assume that the characteristic length 
of the surface elements is small compared to a 
typical acoustic wavelength, the pressure and 
velocity can be considered constant over each 
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element and can be represented by an average 
value. Therefore, Equation 12 can be written as

(12)

where                       is the volume velocity at 
point k. Therefore, using the reciprocity principle 
and the definition of sound power, it can be 
shown that the average sound power can be 
estimated by Arenas and Crocker [5]:

(13)

where u—N’ × 1 column vector of volume 
velocities, H—Hermitian, and R —symmetric 
N’ × N’ acoustic resistance matrix whose elements 
are given by the real part of Equation 12. 

An approximate low-frequency formula for 
calculating the elements of R when fluid loading 
is neglected is given by Berkhoff [8]:

(14)

where ρ0—density of the fluid, c—speed of 
sound, k—wavenumber of the sound, and 
d—distance between the center points of 
elements i and k. An important observation is that 
R depends neither on the velocity distribution 
on the plate nor on the boundary conditions. 
Therefore, computation of R is needed just once 
per frequency and, consequently, data can be 
stored for reusing, reducing the computational 
cost. 

Now, the sound radiation efficiency is 

(15)

where S—total surface of the plate and 〈V2〉—
space-averaged mean square normal vibration 
velocity amplitude, defined as

(16)

In the rest of this paper, when the sound 
radiation is produced by a single mode (m, n) the 
sound radiation efficiency will be denoted as σmn.

2.3. Discretization of a Circular Plate

Implementation of the computational codes 
requires partition of the total surface of the 
circular plate into small elements of equal area. 
However, transformation to a classical polar co-
ordinate system will produce surface elements 
of different area. Therefore, to discretize a 
circular surface of radius a, into small elements 
of equal area, the surface is divided first into L 
equally spaced concentric rings [9]. Thus, the 
co-ordinates of the center point of each element 
are ri = a(2i – 1)/2L and φi = π(2i – 1)/4(2i – 1), 
where i = 1, 2, … , L and j = 1, 2, … , 4(2i – 1). 
This discretization produces a total of 4L2 
elements having a surface ΔS = π(a/L)2/4. An 
example using L = 10 is shown in Figure 1.
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Figure 1. Example of a discretization of a 
circular surface into small elements of equal 
area. The center point of each discrete element 
is indicated by a cross.

On  the  other  hand,  Equation  16  can  be 
estimated with

(17)

3. NUMERICAL EXAMPLES

In this section some numerical examples 
of circular plates are presented. All the 
computations were performed using programs 
written in Matlab® version 7.1. In addition, it has 
been assumed that the circular baffled plate is 
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radiating sound into air (ρ0 = 1.21 kg/m3), so the 
plate response is not significantly affected by the 
surrounding environment.

In Rdzanek et al. [4] an exact integral expression 
for the sound radiation efficiency related to 
the mode (m, n) is derived from its Hankel 
representation (see Equation 21 of Rdzanek et 
al.). Evidently, sound radiation efficiency may be 
dependent on the particular boundary condition 
at the edge of the circular plate, which can be 
defined through the appropriate values of p 
and q. An interesting result is to plot the sound 
radiation efficiency of some fundamental modes 
for some classical boundary conditions. Figure 2 
shows the results of sound radiation efficiency 
of the lowest structural modes of a circular plate 
of radius a = 0.3 m and thickness h = 6 × 10–3 m, 
made of steel (E = 210 GPa, v = 0.3, 
ρ = 7 850 kg/m3) which is clamped (p = ∞ and 
q = ∞), simply-supported (p = 0 and q = ∞), free 
(p = 0 and q = 0), and guided (p = ∞ and q = 0). 
In computing the results shown in Figure 2, the 
exact integral representation has been used. For 
making a comparison, sound radiation is plotted 
as a function of the dimensionless ratio f/fc, 
where fc is the critical frequency of the plate. The 
critical frequency is defined as the frequency at 

which the propagation speed of the bending wave 
in the plate is equal to the speed of sound in the 
air (c = 343 m/s). 

The results are quite similar to those obtained 
for square plates [5]. As expected, the radiation 
efficiency approaches unity for frequencies at and 
above fc. It should also be noted that well below 
the critical frequency, the radiation efficiency 
is larger in the case of a simply-supported plate 
but the difference is slightly over 1 dB. Similar 
observation can be made from previous works 
on rectangular plates [10], where in the low-
frequency range plates with edges that are more 
constrained do not always have larger radiation 
efficiencies than plates with edges that are less 
constrained. However, there is a significant 
difference in sound radiation efficiency for 
guided and free circular plates. For very low 
frequencies, a clamped circular plate could have 
a radiation efficiency which is more than 50 dB 
greater than that of a free plate. 

Figures 3–4 show the results of the modal 
radiation efficiency for some structural modes 
of a circular plate having a uniform elastic 
boundary condition defined by q = 10 and 
p = 100. The modal radiation efficiencies were 
calculated using the acoustic resistance matrix 

Figure 2. Radiation efficiency (σ) of the lowest mode of a simply-supported (S-S), clamped, guided, 
and free circular plate as a function of f/fc.
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(Equations 13–16) and they are plotted as a 
function of the dimensionless ratio k/kmn. A 
number L = 20 was used in the discretization. 
For comparison, modal radiation efficiencies 
were also computed using the exact integral 
representation and they are displayed as symbols 
in the same plot. There is good agreement with 
the curves presented in the literature (Figure 1 of 
Rdzanek et al. [4]) for those modes having λmn 
lower than ~30. The low frequency estimation 
deteriorates for modes (10, 10) and (11, 10) which 
have λmn = 43.4 and λmn = 44.8, respectively. It is 

clear that for frequencies well below k = kmn, the 
efficiency of mode (1,1) is large compared with 
the efficiencies of all the other modes. 

Although the acoustic resistance matrix method 
does not consider the intermodal efficiency, the 
total sound power radiated from a circular plate 
can be estimated for very low frequencies using 
Equation 15 and 17. From Equation 15 we obtain

(18)

Now, for frequencies below the first resonance, 
σ can be approximated by 4Sf 2/c2 [11], where f is 

2
0

,
cS V


 


(15) 

22 1
2

.
S

V V
S

  dS (16) 

242 222
2 4 2 4

1

4 2
2

.
L

j
j

L L
V u

a a

 
  Hu u  (17) 

2
0 .cS V    (18) 

Figure 3. Radiation efficiency (σmn) for a number of modes of a circular plate of q = 10 and p = 100. 
Symbols indicate the exact integral values. 

Figure 4. Radiation efficiency (σmn) for a number of modes of a circular plate of q = 10 and p = 100. 
Symbols indicate the exact integral values. 
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the frequency (ω/2π). Above the first resonance 
and up to 3c/P, where P is the perimeter of the 
plate, there are formulae for certain particular 
boundary conditions, and it is well-known that for 
a simply-supported square plate, σ = 4π2D/c2Sρs, 
where ρs is the plate surface density. The space-
averaged mean square normal vibration velocity 
amplitude may be estimated using Equation 17. 

As an example, Rdzanek et al.’s [4] application 
of a circular hatchway is computed using 
Equation 18 for a uniform elastic boundary 
condition defined again by q = 10 and p = 100. 
It is assumed that the hatchway covers are 
made of three different materials: polystyrene 
(E = 3.6 GPa, v = 0.24, ρ = 1 050 kg/m3), hardened 
glass (E = 72 GPa, v = 0.24, ρ = 2 900 kg/m3), 
and steel (E = 210 GPa, v = 0.3, ρ = 7 850 kg/m3). 
The radius of the plate is a = 0.3 m and the 
thickness is h = 6 × 10–3 m. The final aim of the 
example was to select the hatchway cover that 
produces the lowest sound power level when 
the hatchway is subject to an harmonic force 
applied at a0 = 0.15 m (to assure its asymmetric 
excitation) whose amplitude is F0 = 25 πa2 N. 
Computation of the normal velocity vectors is 
made through the matrix Equation 10. Since 
Equation 10 can be efficiently computed 
using Matlab®, a large number of modes can 
be considered in the estimation. In this case, 

M = N = 11. For computing the sound power 
at frequencies above the first resonance, the 
expression for an equivalent simply-supported 
square plate has been used. Figure 5 shows the 
results of sound power level as a function of ka 
of the circular hatchway. 

Although it is difficult to make a direct 
comparison with the results presented in Rdzanek 
et al.’s Figure 4 [4] because there is a plotting 
error in the dimensionless frequency axis, 
some tendencies can be observed. Obviously, 
the sound power radiated from the hatchway 
reaches high levels at resonance. If we divide 
the axis scale of Rdzanek et al.’s Figure 4 by 20, 
we get quite similar results for frequencies up 
to the first resonance of each sample plate. The 
results are not as good for frequencies above the 
first resonance, where the effect of intermodal 
efficiency might be important. It seems that the 
matrix approach underestimates the sound power 
radiated above the first resonance. Here, Rdzanek 
et al.’s method becomes quite powerful and 
efficient. However, the discrete method allows 
one to select the most silent plate (the one made 
of steel) for frequencies such that ka < 0.15, 
where the sound power level is lower than 40 dB. 
Some authors have suggested that for plates 
radiating under light fluid loading the influence 
of intermodal radiation may be neglected and, to 

Figure 5. Results of the total sound power level (Πref = 10–12 W) for some sample hatchway covers. 
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a first approximation, the radiated sound power of 
a plate is the sum of the power radiated by each 
mode separately [12]. However, according to 
Rdzanek et al.’s results, this is not true in this case 
for frequencies above the first resonance. Clearly, 
the matrix approach could give better results for 
higher frequencies, although its applicability will 
be limited by the number of discrete elements.   

4. CONCLUDING REMARKS

A discrete approach to study the low-frequency 
sound radiation from a circular hatchway has 
been presented. From comparison with some 
benchmark results reported in the literature, 
we observe that the discrete method works fine 
in the low-frequency range when the response 
of the plate is dominated by one mode, i.e., at 
resonance. When the response of more than 
one mode is significant, the method gives good 
estimation of the sound radiation for frequencies 
up to the first resonance. Above that frequency, 
Rdzanek et al.’s [4] method appears more 
convenient for numerical computations. However, 
despite the limitations, the discrete method could 
be combined with other numerical methods, such 
as finite elements, to estimate the sound radiation 
from complex and irregular plane surfaces. 
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