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Abstract. The paper deals with operators of the form A = S + B, where B is a compact
operator in a Hilbert space H and S is an unbounded normal one in H, having a compact
resolvent. We consider approximations of the eigenvectors of A, corresponding to simple
eigenvalues by the eigenvectors of the operators An = S +Bn (n = 1, 2, . . .), where Bn is an
n-dimensional operator. In addition, we obtain the error estimate of the approximation.
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1. INTRODUCTION AND NOTATIONS

Let H be a separable Hilbert space with a scalar product (·, ·), the norm ‖·‖ =
√

(·, ·)
and the unit operator I. Let S be a normal operator in H, having a compact resolvent,
and B be a compact operator in H. Besides, we do not assume that B is normal. Our
main object is the operator

A = S +B. (1.1)

Numerous integro-differential operators can be represented in the form (1.1) (cf. [1,
3, 4]). This paper deals with approximations of the eigenfunctions of the operators
defined as in (1.1).

The literature devoted to approximations of the eigenvectors of various concrete
operators is rather rich. In particular, in the paper, [12] approximations of Schrödinger
eigenfunctions are explored by canonical perturbation theory. In [5] the author inves-
tigates eigenvectors of Toeplitz matrices under higher order three term recurrence and
circulant perturbations. The paper [9] deals with approximations of eigenfunctions of
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the periodic Schrödinger operators. The paper [16] introduces an algorithm to nu-
merically approximate eigenfunctions of Sturm-Liouville problems corresponding to
eigenvalues in a given region. In the papers [2,13–15], the authors investigate stability
and approximation properties of the eigenfunctions of Neumann and Dirichlet Lapla-
cians. In particular, the lowest nonzero eigenvalue and corresponding eigenfunction is
studied. Certainly, we could not survey the whole subject here and refer the reader
to the above listed publications and references given therein.

To the best of our knowledge, the approximations of the eigenfunctions of the
operators of the form (1.1) were not investigated in the available literature.

We introduce the notation. For a linear unbounded operator A in H, Dom(A)
is the domain, A∗ is the adjoint of A; σ(A) denotes the spectrum of A and A−1

is the inverse to A, Rλ(A) = (A − Iλ)−1 (λ 6∈ σ(A)) is the resolvent; λk(A) are
the eigenvalues of A taken with their multiplicities; ρ(A, λ) = infs∈σ(A) |λ − s| - the
distance between λ ∈ C and σ(A). If A is bounded, then ‖A‖ means its operator
norm.

We will say that an eigenvalue of a linear operator is simple, if its algebraic multi-
plicity is equal to one. By e(λ(A)) we denote the normalized eigenvector corresponding
to an eigenvalue λ(A).

For an integer p ≥ 1, SNp is the Schatten-von Neumann ideal of compact operators
K in H with the finite norm Np(K) = [Trace (KK∗)p/2]1/p.

2. PRELIMINARIES

Let T1 and T2 be two linear operators in H with Dom(T2) = Dom(T1) and q :=
‖T1 − T2‖ <∞. Assume that

‖Rλ(T1)‖ ≤ φ(1/ρ(T1, λ)) for all regular λ of T1, (2.1)

where φ(x) is a monotonically increasing non-negative continuous function of a
non-negative variable x, such that φ(0) = 0 and φ(∞) =∞. Put

Ω(c, r) := {z ∈ C : |z − c| ≤ r} and ∂Ω(c, r) := {z ∈ C : |z − c| = d} (c ∈ C, r > 0).

Under condition (2.1), let T1 have an eigenvalue λ(T1) and

d :=
1

2
distance{λ(T1), σ(T1)\λ(T1)} > 0. (2.2)

Suppose that
qφ(1/d) < 1. (2.3)

Since Rλ(T1)−Rλ(T2) = Rλ(T1)(T2−T1)Rλ(T2), from (2.1) and (2.3) it follows that

‖Rλ(T2)‖ ≤ ‖Rλ(T1)‖
1− qφ(1/d)

≤ φ(1/d)

1− qφ(1/d)
<∞ (λ ∈ ∂Ω(λ(T1), d)). (2.4)
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Put

P (T1) = − 1

2πi

∫

∂Ω(λ(T1),d)

Rλ(T1)dλ and P (T2) = − 1

2πi

∫

∂Ω(λ(T1),d)

Rλ(T2)dλ,

that is, P (T1) and P (T2) are the Riesz projections onto the eigenspaces of T1 and T2,
respectively, corresponding to the points of the spectra, which belong to Ω(λ(T1), d).

Lemma 2.1. Let T1 satisfy condition (2.1), with an eigenvalue λ(T1) of the algebraic
multiplicity ν and the condition

qφ(1/d)[1 + φ(1/d)d] < 1 (2.5)

holds, where d is defined by (2.2). Then dimP (T1)H = dimP (T2)H = ν and

‖P (T1)− P (T2)‖ ≤ δ, where δ :=
qdφ2(1/d)

1− qφ(1/d)
< 1. (2.6)

Proof. From (2.5) we have qφ(1/d) < 1; furthermore, qφ2(1/d)d < 1 − qφ(1/d), this
implies δ < 1. From (2.4) with ∂Ω = ∂Ω(λ(T1), d) it follows that

‖P (T1)− P (T2)‖ ≤ 1

2π

∫

∂Ω

‖Rλ(T1)−Rλ(T2)‖|dλ|

≤ 1

2π

∫

∂Ω

‖Rλ(T2)‖qφ(1/d)|dλ| ≤ qφ2(1/d)d

1− qφ(1/d)
= δ.

Now due to (2.6) and the well-known result [10, p. 156, Problem III.2.1] we have
dimP (T1)H = dimP (T2)H = ν, as claimed.

Lemma 2.2. Suppose T1 has a simple eigenvalue λ(T1), and conditions (2.1) and
(2.5) hold. Then T2 has in Ω(λ(T1), d) a simple eigenvalue, say λ(T2). Moreover,

‖e(λ(T2))− e(λ(T1))‖ ≤ 2δ

1− δ .

Proof. For simplicity put e = e(λ(T1)). Due to the previous lemma T2 has in
Ω(λ(T1), d) a simple eigenvalue and ‖P (T1) − P (T2)‖ ≤ δ < 1. Consequently,
P (T2)e 6= 0, since P (T1)e = e. Thanks to the relation T2P (T2)e = λ(T2)P (T2)e,
P (T2)e is an eigenvector of T2. Put η = ‖P (T2)e‖. Then e(λ(T2)) = 1

ηP (T2)e is a
normalized eigenvector of T2. For simplicity put e(λ(T2)) = f . So

e− f = P (T1)e− 1

η
P (T2)e = e− 1

η
e+

1

η
(P (T1)− P (T2))e.

But
η ≥ ‖P (T1)e‖ − ‖(P (T1)− P (T2))e‖ ≥ 1− δ.
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Hence 1
η ≤ (1− δ)−1 and

‖e− f‖ ≤
(1

η
− 1
)
‖e‖+

1

η
‖P (T1)− P (A2)‖‖e‖

≤ (1− δ)−1 − 1 + (1− δ)−1δ = 2δ(1− δ)−1,

as claimed.

The result is similar to the latter lemma in the case of bounded operators and is
proved in [6] (see also [7, Lemma 4.3.2]).

3. THE MAIN RESULTS

Let {ek}∞k=1 be the normalized eigenvectors of a normal operator S having a compact
resolvent, and let a compact operator B be represented in the basis {ek}∞k=1 by a
matrix (bjk)∞j,k=1. Then operator A defined by (1.1) is represented by the matrix
(ajk) with ajj = λj(S) + bjj and ajk = bjk (j 6= k).

For an integer n < ∞, put b̂(n)
jk = bjk if 1 ≤ j, k ≤ n and b̂

(n)
jk = 0 otherwise.

Denote by Bn the operator represented in the basis {ek}∞k=1 by matrix (b
(n)
jk )∞j,k=1.

So Bn has a range no more than n. We will approximate the spectrum of A by the
spectrum of the operators An = S +Bn (n = 1, 2, . . .). So An = Sn ⊕ Cn, where

Cn = (bjk)nj,k=1 + diag(λk(S))nk=1 and Sn = diag(λk(S))∞k=n+1.

Consequently, Cn has in the basis {ek}nk=1 the entries cjj = λj(S) + bjj and cjk = bjk
(j 6= k; 1 ≤ j, k ≤ n).

Note that the resolvent

Rλ(A) = (S − τ +B − (λ− τ)I)−1 =
(
I + (B − (λ− τ)I)(S − τI)−1)(S − τI)

)−1

= Rτ (S) (I + (B − (λ− τ)I)Rτ (S)))
−1

(τ 6∈ σ(S))

is compact for any regular λ of A, and therefore, the spectrum of A is discrete. Since
B is compact, we have

qn := ‖An −A‖ = ‖Bn −B‖ → 0 as n→∞.

Introduce the quantity

g(Cn) =
[
N2

2 (Cn)−
n∑

k=1

|λk(Cn)|2
]1/2

.

The following relations are checked in [7, Section 2.1].

g2(Cn) ≤ N2
2 (Cn)− |TraceC2

n| and g2(Cn) ≤ 2N2
2 (C√−1,n),
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where C√−1,n = (Cn − C∗n)/2i. If Cn is a normal matrix: CnC∗n = C∗nCn, then
g(Cn) = 0. Assume that

An have a simple eigenvalue λ0(An) (3.1)

and put

d0,n :=
1

2
distance{λ0(An), σ(An)\λ0(An)},

and

Φn(Cn, x) :=
n−1∑

j=0

gj(Cn)

xj+1
√
j!

(x > 0).

Theorem 3.1. Let condition (3.1) hold and

qnΦn(Cn, d0n) [1 + Φn(Cn, d0n)d0n] < 1.

Then A has in Ω(λ0(An), d0n) a unique simple eigenvalue, denoted by λ0(A). Besides,

‖e(λ0(A))− e(λ0(An))‖ ≤ 2δ̂n

1− δ̂n
, where δ̂n :=

qnd0nΦ2
n(Cn, d0n)

1− qnΦn(Cn, d0n)
. (3.2)

If, in addition,
A√−1 = (A−A∗)/2i ∈ SN2 (3.3)

and with the notation

Φ̂(A, x) :=
∞∑

j=0

(
√

2N2(A√−1))j

xj+1
√
j!

(x > 0),

the inequality
qnΦ̂(A, d0n) [1 + Φ̂(A, d0n)d0n] < 1 (3.4)

is fulfilled, then δ̂n → 0.

This theorem is proved in the next section.
Now assume that a condition more general than (3.3) hold:

A−A∗ ∈ SN2p (p = 1, 2, . . .). (3.5)

Under this condition we establish a result, which in the case (3.3) is less sharp than
Theorem 3.1. To this end put

βp :=

{
2(1 + ctg ( π4p ) ) if p = 2m−1, m = 1, 2, . . . ,

2(1 + 2p
exp(2/3)ln2 ) otherwise

and

ψ̂p(A, x) =

p−1∑

m=0

∞∑

k=0

Nkp+m
2p (βpA√−1)

xkp+m+1
√
k!

(x > 0).
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In addition, for n = jp (j = 1, 2, . . .) denote

ψp,n(Cn, x) =

p−1∑

m=0

j∑

k=0

Nkp+m
2p (βpC√−1,n)

xkp+m+1
√
k!

.

Theorem 3.2. Under conditions (3.1) and (3.5) with n = jp (j = 1, 2, . . .), let

qnψp,n(Cn, d0n)[1 + ψp,n(Cn, d0n)d0n] < 1.

Then A has in Ω(λ0(An), d0n) a simple eigenvalue, denoted by λ0(A). Moreover,

(3.9) ‖e(λ0(A))− e(λ0(An))‖ ≤ 2∆̂p,n

1− ∆̂p,n

, where ∆̂p,n :=
qnd0nψp,n(Cn, d0n)

1− qnψp,n(Cn, d0n)
.

If, in addition,
qnψ̂p(A, d0n) [1 + ψ̂p(A, d0n)d0n] < 1, (3.6)

then ∆̂p,n → 0.

This theorem is also proved in the next section.

4. PROOFS OF THEOREMS 3.1 AND 3.2

Put Qn =
∑n
k=1(·, ek)ek. Then Cn = QnAQn and Sn = (I − Qn)S = S(I − Qn).

Clearly, SnCn = CnSn = 0 and

σ(An) = σ(Cn) ∪ {λk(S)}∞k=n+1. (4.1)

Thus
‖Rλ(An)‖ = max{‖QnRλ(Cn)‖, ‖(I −Qn)Rλ(Sn)‖}. (4.2)

Assume that

‖Rλ(Cn)‖ ≤
n−1∑

k=0

ck
ρk+1(Cn, λ)

= pn(1/ρ(Cn, λ)) (λ 6∈ σ(Cn)), (4.3)

where ck = const ≥ 0, c0 = 1, and

pn(x) =

n−1∑

k=0

ckx
k+1.

Since Sn is normal, (4.1) and (4.2) imply the inequality

‖Rλ(An)‖ ≤ max{pn(1/ρ(Cn, λ)), 1/ρ(Sn, λ)}.

But due to (4.1) ρ(Cn, λ) ≥ ρ(An, λ) and ρ(Sn, λ) ≥ ρ(An, λ). In addition, pn(x) ≥ x
for x ≥ 0. Thus

‖Rλ(An)‖ ≤ pn(1/ρ(An, λ)).

Now Lemma 2.2 implies the following result.



Simple eigenvectors of unbounded operators of the type “normal plus compact” 167

Lemma 4.1. Let the conditions (3.1), (4.3) and

qnpn(1/d0n) [1 + p2
n(1/d0n)d0n] < 1

hold. Then A has in Ω(λ0(An), d0n) a unique simple eigenvalue λ0(A) and

‖e(λ0(A))− e(λ0(An))‖ ≤ 2δn
1− δn

, where δn :=
qnd0np

2
n(1/d0n)

1− qnpn(1/d0n)
.

Note that according to (4.1) either λ0(An) ∈ σ(Sn) or λ0(An) ∈ σ(Cn).

Proof of Theorem 3.1. Thanks to Corollary 2.1.2 of [7] we have

‖Rλ(Cn)‖ ≤
n−1∑

k=0

gk(Cn)√
k!ρk+1(Cn, λ)

for any regular point λ of Cn.

Hence, inequality (3.2) is due to the previous lemma.
Furthermore, as it was mentioned, g(C√−1,n) ≤

√
2N2(C√−1,n). In addition,

N2(C√−1,n) ≤ N2(AnI) ≤ N2(A√−1) and Φn(Cn, x) ≤ Φ̂(A, x) (x > 0). Now letting,
n→∞ we obtain that δ̂n → 0, provided conditions (3.4) and (3.3) hold. This proves
the theorem.

To prove Theorem 3.2 we need the following result.

Lemma 4.2. Let T be a linear operator acting in a Euclidean space Cn with n = jp
and integers p ≥ 1, j ≥ 1. Then

‖Rλ(T )‖ ≤
p−1∑

m=0

j∑

k=0

Nkp+m
2p (βpT√−1)

ρpk+m+1(T, λ)
√
k!

(λ 6∈ σ(T )),

where T√−1 = (T − T ∗)/2i.
Proof. Due to the algebraic Schur theorem (cf. [11]) T = D+V (σ(T ) = σ(D)), where
D is a normal matrix and V is a nilpotent matrix. Besides, D and V have the same
invariant subspaces, and V is called the nilpotent part of T . Thanks to [7, Lemma
6.8.3],

‖Rλ(T )‖ ≤
p−1∑

m=0

j∑

k=0

Nkp+m
2p (V )

ρpk+m+1(T, λ)
√
k!

(λ 6∈ σ(T )),

where V is the nilpotent part of √−1. Making use of Lemma 7.9.2 from [7], we get
the inequality N2p(V ) ≤ βpN2p(T√−1) for appropriately chosen βp. This proves the
lemma.

Proof of Theorem 3.2. The previous lemma and Lemma 4.1 imply inequality (3.2).
Furthermore, take into account that N2p(C√−1,n) ≤ N2p(AnI) ≤ N2p(A√−1) and

ψp,n(Cn, x) ≤ ψ̂p(A, x) (x > 0). Now letting, n → ∞ we obtain that ∆̂p,n → 0,
provided conditions (3.5) and (3.6) hold. This proves the theorem.
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