PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Ignition Delay Times for Amine-based Liquid Propellants through a QSPR Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decreasing the ignition delay time in the combustion chamber of a rocket engine is required from a safety point of view. However it takes a lot of time and money to find the most suitable compounds with a low ignition delay time. In the present research, a model is proposed to predict the ignition delay time of aminebased liquid propellants through the quantitative structure-property relationship (QSPR) method. This model was derived based on 35 data sets collected from reliable references and by the selection of appropriate descriptors using multivariate linear regression (MLR). The determination coefficient, mean absolute deviation and root mean square deviation of the new model were 0.9901, 2.51 and 3.19 ms, respectively, which indicates high reliability. Furthermore, the values of the cross validation coefficients of the new proposed model were Q²LOO = 0.9903 and Q²LMO = 0.9906, which confirm its sufficient validation. The most important variables which have an effect on the ignition delay time of amine-based liquid propellants were identified as the elemental composition, temperature and the percentage ratio of oxidizer to fuel (O/F).
Rocznik
Strony
68--79
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
Bibliografia
  • [1] Guseinov, S.L.; Fedorov, S.G.; Kosykh, V.A.; Storozhenko, P.A. Hypergolic Propellants Based on Hydrogen Peroxide and Organic Compounds: Historical Aspect and Current State. Russ. Chem. Bull. 2018, 67(11): 1943-1954; https://doi.org/10.1007/s11172-018-2314-1.
  • [2] Hampton, C.S.; Ramesh, K.K.; Smith, J.E. Importance of Chemical Delay Time in Understanding Hypergolic Ignition Behaviors. Proc. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2003.
  • [3] Pakdehi, S.G.; Shirzadi, B. Specific Impulse and Ignition Delay Time Assessment for DMAZ with Liquid Oxidizers for an Upper Stage Rocket Engine. Iran. J. Chem. Chem. Eng. 2017, 36(6): 171-176; https://doi.org/10.30492/ijcce.2017.26594.
  • [4] Yu, G.; Askari, O.; Hadi, F.; Wang, Z.; Metghalchi, H.; Kannaiyan, K.; Sadr, R. Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gasto-Liquid Fuel. J. Energy Resour. Technol. 2017, 139(2): 022202-022208; https://doi.org/10.1115/1.4033984.
  • [5] Yu, G.; Askari, O.; Metghalchi, H. Theoretical Prediction of the Effect of Blending JP-8 with Syngas on the Ignition Delay Time and Laminar Burning Speed. J. Energy Resour. Technol. 2018, 140(1): 012204-012209; https://doi.org/10.1115/1.4037376.
  • [6] Mohammadi, K.; Gorji, M. Prediction of Amine-Based Liquid Rocket Propellant Shelf Life. Propellants Explos. Pyrotech. 2013, 38(4): 541-546; https://doi.org/10.1002/prep.201200091.
  • [7] Zohari, N.; Ebrahimzadeh Qhomi, M.M. Two Reliable Simple Relationships between Flash Points of Hydrocarbon Kerosene Fuels and Their Molecular Structures. Z. Anorg. Allg. Chem. 2017, 643(15): 985-992; https://doi.org/10.1002/zaac.201700142.
  • [8] Fareghi-Alamdari, R.; Zohari, N.; Sheibani, N. Reliable Evaluation of Ignition Delay Time of Imidazolium Ionic Liquids as Green Hypergolic Propellants by a Novel Theoretical Approach. Propellants Explos. Pyrotech. 2019, 44(9): 1147-1153; https://doi.org/10.1002/prep.201800343.
  • [9] Zohari, N.; Montazeri, M.; Hosseini, S.G. Estimation of the Detonation Pressure of Co-crystal Explosives through a Novel, Simple and Reliable Model. Cent. Eur. J. Energ. Mater. 2020, 17(4): 492-505; https://doi.org/10.22211/cejem/131687.
  • [10] Zohari, N.; Mohammadkhani, F.G. Detonation Velocity Assessment of Energetic Cocrystals Using QSPR Approach. Z. Anorg. Allg. Chem. 2020, 646(1): 30-35; https://doi.org/10.1002/zaac.201900202.
  • [11] Zohari, N.; Abrishami, F.; Zeynali, V. Prediction of Decomposition Temperature of Azole-based Energetic Compounds in Order to Assess of Their Thermal Stability. J. Therm. Anal. Calorim, 2020, 141: 1453-1463; https://doi.org/10.1007/s10973-019-09127-2.
  • [12] Durgapal, U.C.; Dutta, P.K.; Pant, G.C.; Ingalgaonkar, M.B.; Oka, V.Y.; Umap, B.B. Studies on Hypergolicity of Several Liquid Fuels with Fuming Nitric Acids as Oxidizers. Propellants Explos. Pyrotech. 1987, 12(5): 149-153; https://doi.org/10.1002/prep.19870120503.
  • [13] Durgapal, U.C.; Venugopal, V.K. Hypergolic Ignition of Rocket Propellants with Nitric Acid Containing Dissolved Nitrogen Tetroxide. AIAA J. 1974, 12(11): 1611-1612; https://doi.org/10.2514/3.49561.
  • [14] Ladanyi, D.J.; Miller, R.O. Comparison of Ignition Delays of Several Propellant Combinations Obtained with Modified Open-cup and Small-scale Rocket Propellant Apparatus. NACA Research Memorandum E53D03, US, 1953.
  • [15] Palm, W.J. Introduction to Matlab for Engineers. 3rd Ed., McGraw-Hill, New York, 2010.
  • [16] Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules 2009, 14: 1660-1701; https://doi.org/10.3390/molecules14051660.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4d0a487-e302-4b16-bcb8-32a01e1aba93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.