PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Product Life Cycle Assessment (LCA) as a Tool for Environmental Management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Life Cycle Assessment, included in company environmental management methods, has particular importance in marketing management. Analysis of dangers to the environment through tools such as the LCA method allows for comparisons of alternative company management strategies. LCA is characterised as a technique for environmental management that enables environmental impact assessment of the product, process, industry, and even the comprehensive economic sector. LCA also influences decisions regarding environmental policy modification, but most importantly, it influences a company's marketing activities. The LCA technique is applied the world over with great effectiveness in studying specific phases of a product's life cycles – from 'birth to death'; however, Poland's experience in this domain constitutes continuously developing research areas. The experience of foreign research centres confirms the possibility of applying LCA techniques in supporting environmental risk assessment of innovative technologies where LCA is used to study the environmental impact of a new generation product, i.e. flocculants from polymer wastes. This article presents the results of a study of the effectiveness of applying a new generation of polyelectrolyte (gained from polystyrene waste) in treating industrial wastewater and the LCA environmental impact assessment, which was carried out using SimaPro software. Based on the analysis of the results of the application of sodium salts of sulfone derivatives of polystyrene in the treatment of mine water, it was found that these products significantly reduced the pollution indicators of mine water from KWK1. Accordingly, they provided the basis for the development of technical-scale technology.
Rocznik
Tom
Strony
389--398
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Innovation and Safety Management Systems, Faculty of Management, Czestochowa University of Technology, Poland
  • Department of Management and Logistics, Faculty of Social Sciences, Academy in Piotrków Trybunalski, Poland
  • Faculty of Natural and Technical Sciences, John Paul II Catholic University of Lublin, Poland
Bibliografia
  • Aghbashlo, M., Tabatabaei, M., Amid, S., Hosseinzadeh-Bandbafha, H., Khoshnevisana, B., Kianian, G. (2020). Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel. Renewable Energy, 151, 1352-1364. https://doi.org/10.1016/j.renene.2019.11.144
  • Alwaeli, M., Nadziakiewicz, J. (2018). Recycling of scale and steel chips waste as a partial replacement of sand in concrete. Constr. Build. Mater., 28, 157-163. https://doi.org/10.1016/j.conbuildmat.2011.08.047
  • Alwaeli, M. (2009). Recycling of packaging waste in Poland. Waste Management, 29(12), 3054-3055. https://doi.org/10.1016/j.wasman.2009.09.004
  • Bajdur, M.W. (2011). Eko-polielektrolity syntetyczne redukujące ładunki zanieczyszczeń w ściekach i wodach przemysłowych, The Publishing House of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences PAN, Cracow. (in Polish)
  • Bajdur, W.M., Idzikowski, A., Roman, M., Konodyba-Rorat, B., Brzeziński, A., Wrona, T. (2017). Metody stosowane w modelowaniu systemów bezpieczeństwa i ochrony środowiska, w: Wielowymiarowość współczesnego zarządzania organizacjami, Monografia, Wydawnictwo Wydziału Zarządzania Politechniki Częstochowskiej. (in Polish)
  • Bajdur, W.M., Sułkowski, W. (2000a). Modyfikacja żywic fenolowo-formaldehydowych w celu otrzymania efektywnych flokulantów. Chemia i Inżynieria Ekologiczna, 7(1-2), 129-134. (in Polish)
  • Bajdur, W.M., Sułkowski, W. (2000b). Właściwości flokulacyjne modyfikowanych odpadów spienionego polistyrenu, Chemia i Inżynieria Ekologiczna, 7(1-2), 119-127. (in Polish)
  • Bajdur, W.M., Sułkowski, W. (2003). Application of Modified Wastes from Phenol-Formaldehyde Resin and Expanded Polystyrene in Sewage Treatment Processes. Macromolecula Symposia, 202(1), 325-337.
  • Bajdur, W.M. (2021). Ekoinnowacje w technologiach chemicznych: przykłady zastosowań środowiskowej oceny cyklu życia LCA. Przemysł Chemiczny, 100(11). https://doi.org/10.15199/62.2021.11.18
  • Beylot, A., Muller, S., Descat, M., Ménard, Y., Villeneuve, J. (2018). Life cycle assessment of the French municipal solid waste incineration sector. Waste Management, 80, 144-153, https://doi.org/10.1016/j.wasman.2018.08.037
  • Ciuła, J. (2022). Analysis of the effectiveness of wastewater treatment in activated sludge technology with biomass recirculation. Architecture Civil Engineering Environment, 15(2), 123-134. https://doi.org/10.2478/acee-2022-0020
  • Ciuła, J., Kowalski, S., Wiewiórska, I. (2023). Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. Journal of Ecological Engineering, 24(3), 232-245. https://doi.org/10.12911/22998993/158562
  • De la Rúa Lope, C., Lechon, Y. (2017). Life Cycle Assessment of Biofuel Production. Biofuels Production and Processing Technology. https://doi.org/10.1201/9781315155067-22
  • Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M. (2018). Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of The Total Environment, 626, 744-753. https://doi.org/10.1016/j.scitotenv.2018.01.151
  • Farzad, S., Mandegari, M.A., Görgens, J.F. (2017). Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresour. Technol., 239, 37-48. https://doi.org/10.1016/j.biortech.2017.04.130
  • Gaska, K., Generowicz, A., Ocłoń, P., Stelmach, S. (2021). Location of the waste incineration plant with particular emphasis on the environmental criteria. Journal of Cleaner Production, 303, 126887. https://doi.org/10.1016/j.jclepro.2021.126887
  • Generowicz, A., Gronba-Chyła, A., Kulczycka, J., Harazin, P., Gaska, K., Ciuła, J., Ocłoń, P. (2023). Life Cycle Assessment for the environmental impact assessment of a city' cleaning system. The case of Cracow (Poland). Journal of Cleaner Production, 382, 135184. https://doi.org/10.1016/j.jclepro.2022.135184
  • Generowicz, A., Kulczycka, J., Kowalski, Z., Banach, M. (2011). Assessment of technological solutions of municipal waste management using technology quality indicators and multicriteria analysis. Przemysł Chemiczny, 90(5), 747-752. https://doi.org/10.1016/j.jenvman.2010.12.016
  • Gao, S., Bao, J., Liu, X., Stenmarck, A. (2018). Life Cycle Assessment on Food Waste and its Application in China., IOP Conf. Series: Earth and Environmental Science, 108(4). https://doi.org/10.1088/1755-1315/108/4/042037
  • Gronba-Chyła, A., Generowicz, A., Kramek, A. (2021). Using Selected Types of Waste to Produce New Light Ceramic Material. Pol. J. Environ. Stud., 30(3), 2073-2083. https://doi.org/10.15244/pjoes/126496
  • Gronba-Chyła, A. (2022). Chloride content of street cleaning waste and its potential environmental impact. Architecture Civil Engineering Environment, 2022, 85-90. https://doi.org/10.21307/ACEE-2022-007
  • https://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml. (14.12.2023)
  • Explanations to guidelines of EU Commission 2021/2279 of December 15, 2021, pertaining to methods applied in establishing environmental traces for measuring environmental effectiveness in the life cycle of products and organisations and information there of (Official Journal of the European Union, L 471 of December 30, 2021). Official Journal of the European Union L 144/2 of May 23, 2022, 29-30.
  • Kowalski, Z., Makara, A., Banach, M., Kowalski, M. (2010). Zastosowanie preparatów nanosrebra do oczyszczania powietrza z instalacji klimatyzacyjnej zakładów mięsnych. Przemysł Chemiczny, 89(4), 434-437. (in Polish)
  • Kulczycka, J., Henclik, A. (2006). LCA uniwersalną techniką zarządzania środowiskowego. Przegląd Górniczy, 4, 43-47. (in Polish)
  • Kulczycka, J., Lelek, L., Lewandowska, A., Zarebska, J. (2015). Life Cycle Assessment of Municipal Solid Waste Management – Comparison of Results Using Different LCA Models. Polish Journal of Environmental Studies, 24(1), 125-140. https://doi.org/10.15244/pjoes/26960
  • Kwaśnicki, P., Gronba-Chyła, A., Generowicz, A., Ciuła, J., Wiewiórska, I., Gaska, K. (2023). Alternative method of making electrical connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs. Archives of Thermodynamics, 44(3), 179-200. https://doi.org/10.24425/ather.2023.147543
  • Lelek, L., Kulczycka, J. (2021). Life cycle assessment of opencast lignite mining. International Journal of Coal Science & Technology, 8, 1272-1287.
  • Lewandowska, A., Kurczewski, P., Kulczycka, J., Joachimiak, K., Matuszak-Flejszman, A., Baumann, H., Ciroth, A. (2013). LCA as an element in environmental management systems – comparison of conditions in selected organisations in Poland, Sweden and Germany. Int J Life Cycle Assess, 18(2), 472-480. https://doi.org/10.1007/s11367-012-0480-1
  • Lloyd, L., Fitch, G., Singh, T., Smith, J. (2019). Technical Papers Characterisation of Environmental Pollutants in Sediment Collected during Street Sweeping Operations to Evaluate its Potential for Reuse. Journal of Environmental Engineering, 145(2). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001493
  • Makara, A., Kowalski, Z., Sówka, I. (2016). Possibility to eliminate emission of odor from pig manure treated using AMAK filtration method. Desalination and Water Treatment., 57(3), 1543-1551.
  • Meyer, DE., Upadhyayula, VK. (2014). The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technol Environ Policy, 16(4), 757-772. https://doi.org/10.1007/s10098-013-0686-3
  • Ozdemir, N.C., Yel, E. (2023). Synthesis of a New Flocculant from Waste Polystyrene: Plastic Recycling Industry Wastewater Treatability. Water Air Soil Pollut., 234, 88. https://doi.org/10.1007/s11270-023-06104-2
  • Pérez, L., Ziegler-Rodríguez, K., Pérez, A., Vásquez, Ó., Vázquez-Rowe, I. (2021). Closing the gap in the municipal solid waste management between metropolitan and regional cities from developing countries: A life cycle assessment approach. Waste Management, 124, 314-324. https://doi.org/10.1016/j.wasman.2021.02.020
  • Tunesi, S. (2011). LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow. Waste Management, 31(3), 561-571. https://doi.org/10.1016/j.wasman.2010.08.023
  • Zhou, Z., Yu, C., Wang, M., Li, M., Ran, C. (2011). Life Cycle Assessment of Acetylene. Asian Journal of Chemistry, 23(9), 4003-4007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4cff68d-f4a7-4714-abb6-4f4c8280be20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.