PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oblique water wave diffraction by a step

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the problem of diffraction of an obliquely incident surface water wave train on an obstacle in the form of a finite step. Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for reflection and transmission coefficients which are depicted graphically. From these figures various interesting results are discussed.
Rocznik
Strony
35--47
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematics Prasannadeb Women's College Jalpaiguri-735101, West Bengal, INDIA
Bibliografia
  • [1] Dean W.R. (1945): On the reflection of surface waves by a submerged plane barrier. Proc. Camb. Phil. Soc., vol.41, pp.231-238.
  • [2] Ursell F. (1947): The effect of a fixed barrier on surface waves in deep water. Proc. Camb. Phil. Soc., vol.43, pp.374-382.
  • [3] Evans D.V. (1970): Diffraction of water waves by a submerged vertical plate. J. Fluid Mech., vol.40, pp.433-451.
  • [4] Porter D. (1972): The transmission of surface waves through a gap in a vertical barrier. Proc. Camb. Phil. Soc., vol.71, pp.411-422.
  • [5] Mandal B.N. and Dolai D.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth. Appl. Ocean Res., vol.16, pp.195-203.
  • [6] Roseau M. (1976): Asymptotic wave theory. North Holland, pp.311-347.
  • [7] Kreisel G. (1949): Surface waves. Quart. Appl. Math., vol.7, pp.21-44.
  • [8] Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89.
  • [9] Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. J. Fluid Mech., vol.83, pp.289-310.
  • [10] Newman J.N. (1965): Propagation of water waves over an infinite step. J. Fluid Mech., vol.23, pp.399-415.
  • [11] Miles J.W. (1967): Surface wave scattering matrix for a shelf. J. Fluid Mech., vol.28, pp.755-767.
  • [12] Mandal B.N. and Gayen, Rupanwita (2006): Water wave scattering by bottom undulations in the presence of a thin partially immersed barrier. Appl. Ocean Res., vol.28, pp.113-119.
  • [13] Dolai D.P. and Dolai P. (2010): Interface wave diffraction by bottom undulations in the presence of a thin plate submerged in lower fluid. Int. J. Appl. Mech. and Engg. vol.15, pp.1017-1036.
  • [14] Stoker J.J. (1957): Water Waves. New York: Interscience.
  • [15] Wehausen J.V. and Laiton E.V. (1960): Surface Waves. Handbuch der Physik: Springer.
  • [16] Bartholomeusz E.F. (1958): The reflection of long waves at a step. Proc. Camb. Phil. Soc., vol.54, pp.106-118.
  • [17] Evans D.V. and McIver P. (1984): Edge waves over a shelf: full linear theory. J. Fluid Mech., vol.142, pp.79-95.
  • [18] Havelock T.H. (1929): Forced surface waves on water. Phil. Mag., vol.8, pp.569-576.
  • [19] Kanoria M., Dolai D.P. and Mandal B.N. (1999): Water wave scattering by thick vertical barriers. J. Eng. Math., vol.35, pp.361-384.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4cb8958-65ca-4255-9291-867e577ee2f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.