PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency control of voltage sourced converter-based multi-terminal direct current interconnected system based on virtual synchronous generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In response to the inability of the flexible DC transmission system connected to the AC grid under conventional control strategies to provide inertia to the system as well as to participate in frequency regulation, a virtual synchronous generator (VSG) control strategy is proposed for a voltage source converter (VSC)-based multi-terminal high-voltage direct current (VSC-MTDC) interconnection system. First, the virtual controller module is designed by coupling AC frequency and active power through virtual inertia control, so that the VSC-MTDC system can provide inertia response for AC grid frequency. Second, by introducing the power margin of the converter station into the droop coefficient, the unbalanced power on the DC side is reasonably allocated to reduce the overshoot of the DC voltage in the regulation process. Finally, the power regulation capability of the normal AC system is used to provide power support to the fault end system, reducing frequency deviations and enabling inter-regional resource complementation. The simulation model of the three-terminal flexible DC grid is built in PSCAD/EMTDC, and the effectiveness of the proposed control strategy is verified by comparing the conventional control strategy and the additional frequency control strategy.
Rocznik
Strony
971--986
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
  • College of Electrical Information Engineering, Zhengzhou University of Light Industry China
  • College of Electrical Information Engineering, Zhengzhou University of Light Industry China
autor
  • College of Electrical Information Engineering, Zhengzhou University of Light Industry China
autor
  • College of Electrical Information Engineering, Zhengzhou University of Light Industry China
autor
  • College of Electrical Information Engineering, Zhengzhou University of Light Industry China
Bibliografia
  • [1] Su M.H., Li Y.K., Dong H.Y., Liu K.Q., Zou W.W., Subsynchronous oscillation and its mitigation of VSC-MTDC with doubly-fed induction generator-based wind farm integration, Archives of Electrical Engineering, vol. 70, no. 1, pp. 53–72 (2021), DOI: 10.24425/aee.2021.136052.
  • [2] Rian F.M., Robin P., Assessing the impact of VSC-HVDC on the interdependence of power system dynamic performance in uncertain mixed AC/DC systems, IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 63–74 (2019), DOI: 10.1109/TPWRS.2019.2914318.
  • [3] Ngo M.K., Nguyen A.T., Doan D.T., Experimental study on fault ride-through capability of VSC-based HVDC transmission system, Archives of Electrical Engineering, vol. 70, no. 1, pp. 37–51 (2021), DOI: 10.24425/aee.2021.136051.
  • [4] Zhang J.Y., Li M.J., Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation, Proceedings of the CSEE, vol. 40, no. 11, pp. 3498–3507 (2020), DOI: 10.13334/j.0258-8013.pcsee.191265.
  • [5] Liu Y.C., Tim C.G., Kumars R., Ali R., Xu D.G., A new droop coefficient design method for accurate power-sharing in VSC-MTDC systems, IEEE Access, vol. 7, pp. 47605–47614 (2029), DOI: 10.1109/ACCESS.2019.2909044.
  • [6] Li B., Li Q.Q., Wang Y.Z., Wen W.J., Li B.T., Xu L., A novel method to determine droop coefficients of DC voltage control for VSC-MTDC system, IEEE Transactions on Power Delivery, vol. 35, no. 5, pp. 2196–2211 (2020), DOI: 10.1109/TPWRD.2019.2963447.
  • [7] Li J.Y., Dong H.Y., Distributed collaborative optimization DC voltage control strategy for VSC–MTDC system with renewable energy integration, Archives of Electrical Engineering, vol. 71, no. 2, pp. 325–342 (2022), DOI: 10.24425/aee.2022.140714.
  • [8] Zhu J.B., Wang X.N., Zhao J.B., Yu L.J., Li S.X., Li Y.W., Josep M.G., Wang C.S., Inertia emulation and fast frequency-droop control strategy of a point-to-point VSC-HVDC transmission system for asynchronous grid interconnection, IEEE Transactions on Power Electronics, vol. 37, pp. 6530–6543 (2022), DOI: 10.1109/TPEL.2021.3139960.
  • [9] Gao B.T., Xia C.P., Zhang L., Chen N., Modeling and parameters design for rectifier side of VSC-HVDC based on virtual synchronous machine technology, Proceedings of the CSEE, vol. 37, no. 2, pp. 534–543 (2017), DOI: 10.13334/j.0258-8013.pcsee.161644.
  • [10] Wang W.Y., Li Y., Cao Y.J., Ulf H., Christian R., Adaptive droop control of VSC-MTDC system for frequency support and power sharing, IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1264–1274 (2018), DOI: 10.1109/TPWRS.2017.2719002.
  • [11] Fernando D.B., Jose L.D.G., Coordinated frequency control using MT-HVDC grids with wind power plants, IEEE Transactions on Sustainable Energy, vol. 7, no. 7, pp. 213–220 (2016), DOI: 10.1109/TSTE.2015.2488098.
  • [12] Miao Z.X., Fan L.L., Dale O., Sunnaraya Y., Wind farms with HVDC delivery in inertial response and primary frequency control, IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1171–1178 (2010), DOI: 10.1109/TEC.2010.2060202.
  • [13] Li C., Li Y., Cao Y.J., Zhu H.Q., Christian R., Ulf H., Virtual synchronous generator control for damping DC-side resonance of VSC-MTDC system, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1054–1064 (2018), DOI: 10.1109/JESTPE.2018.2827361.
  • [14] Wang W.Y., Jiang L., Cao Y.J., Li Y., A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping, IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4609–4621 (2020), DOI: 10.1109/TPWRS.2020.2997859.
  • [15] Zhong Q.C., Virtual synchronous machines and autonomous power systems, Proceedings of the CSEE, vol. 37, no. 2, pp. 336–349 (2017), DOI: 10.13334/j.0258-8013.pcsee.162325.
  • [16] Luo L., Wang Y.H., Chen S.Y., Wan L.B., Adaptive droop control of muti-terminal direct current based on virtual synchronous generator control strategy, Science Technology and Engineering, vol. 21, no. 17, pp. 7116–7121 (2021), DOI: 10.3969/j.issn.1671-1815.2021.17.021.
  • [17] Cao Y.J., Wang W.Y., Li Y., Tan Y., Chen C., He L., Hager U., Christian R., A virtual synchronous generator control strategy for VSC-MTDC systems, IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 750–761 (2018), DOI: 10.1109/TEC.2017.2780920.
  • [18] Liu Z.Y., Wang W.Q., Wang H.Y., Yuan C.Y., Wang L., Li Y.Q., Ding W.B., VSC-HVDC inverter control strategy based on VSG technology, Electric Power Construction, vol. 40, no. 2, pp. 100–108 (2019), DOI: 10. 3969 /j. issn. 1000-7229. 2019. 02. 013.
  • [19] Zhang Y.X., Cheng Y.C., Liu K.X., Han Y., Influence of control parameters on synchronization stability of virtual synchronous generator, Archives of Electrical Engineering, vol. 71, no. 4, pp. 811–828 (2022), DOI: 10.24425/aee.2022.142110.
  • [20] Cui J.T., Li Z., He P., Gong Z.J., Dong J., Electromechanical transient modeling of energy storage based on virtual synchronous machine technology, Archives of Electrical Engineering, vol. 71, no. 3, pp. 581–599 (2022), DOI: 10.24425/aee.2022.141672.
  • [21] Zhu J.B., Campbell D.B., Grain P.A., Andrew J.R., Chris G.B., Inertia emulation control strategy for VSC-HVDC transmission systems, IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1277–1287 (2013), DOI: 10.1109/TPWRS.2012.2213101.
  • [22] Shen Z.P., Zhu J.B., Ge L.J., Bu S.Q., Zhao J.B., Chung C.Y., Li X.L., Wang C.S., Variable-inertia emulation control scheme for VSC-HVDC transmission systems, IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 629–639 (2022), DOI: 10.1109/TPWRS.2021.3088259.
  • [23] Li C.S., Li Y.K., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020), DOI: 10.24425/aee.2022.140714.
  • [24] Liu Z.X., Qin L., Yang S.Q., Zhou Z.Y., Wang Q., Zheng J.W., Liu K.P., Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy, Power System Technology, vol. 47, no. 1, pp. 1–16 (2023), DOI: 10.13335/j.1000-3673.pst.2022.0083.
  • [25] Huang Z.D., Adaptive integrated coordinated control strategy for MMC-MTDC Systems, 2018 International Conference on Power System Technology, pp. 2440–2447 (2018), DOI: 10.1109/POWER-CON.2018.8601697.
  • [26] Peng Q., Liu T.Q., Zhang Y.M., Li B.H., Tang S.Y., Adaptive droop control of VSC based DC grid considering power margin and system stability, Proceedings of the CSEE, vol. 38, no. 12, pp. 3498–3506 (2018), DOI: 10.13334/j.0258-8013.pcsee.171464.
  • [27] Liu H.Y., Liu C.R., Jiang S.W., Dynamic additional frequency control strategy for multi-terminal flexible DC transmission system, Electric Power Automation Equipment, vol. 42, no. 1, pp. 164170 (2022), DOI: 10.16081/j.epae.202109025.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4c88794-abeb-4224-aaea-868af4acc0b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.