PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chitosan Modified Corn Starch and Its Application as a Glass Fibre Sizing Agent

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Skrobia kukurydziana modyfikowana chitozanem i jej zastosowanie jako środka klejącego włókien szklanych
Języki publikacji
EN
Abstrakty
EN
Chitosan-modified corn starch was prepared and then applied as a glass fiber sizing agent. The effect of the chitosan on starch-based emulsion, film and sized glass fiber was studied. When 5 % of the chitosan was added, the overall performance of the modified film-forming agent was optimal. The viscosity, surface tension and zeta potential of the sizing agent were 44.99 mPa·s, 51.29 mN·m-1 and 4.5 mV, respectively. The modified sizing agent could easily spread over the surface of glass fibre, and conglutinated to the glass surface firmly. The tensile strength and stiffness of modified-starch glass fiber reached 0.43 N·tex-1 and 4.96 cm. Glass fiber with good overall performance was obtained.
PL
W pracy przygotowano skrobię kukurydzianą modyfikowaną chitozanem, a następnie zastosowano ją jako środek klejący włókien szklanych. Określono lepkość, napięcie powierzchniowe i potencjał zeta środka klejącego. Zmierzono wytrzymałość na rozciąganie i sztywność zmodyfikowanego włókna szklanego. Stwierdzono, że modyfikacja skrobi chitozanem powoduje poprawienie jej właściwości jako środka klejącego. Modyfikacja zwiększyła przyczepność skrobi do włókien i poprawiła ich właściwości mechaniczne.
Rocznik
Strony
112--120
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
autor
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
autor
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
autor
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
autor
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
autor
  • Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
Bibliografia
  • 1. Ivashchenko EA. Sizing and Finishing Agents for Basalt and Glass Fibers. Theoretical Foundations of Chemical Engineering 2009; 43: 511-516.
  • 2. Thomason JL, and Adzima LJ. Sizing up the interphase: an insider's guide to the science of sizing. Composites Part A: Applied Science and Manufacturing 2001; 32: 313-321.
  • 3. Zhang RL, Zhang JS, Zhao LH, and Sun YL. Sizing Agent on the Carbon Fibers Surface and Interface Properties of Its Composites. Fibers and Polymers 2015; 16: 657-663.
  • 4. Zhu ZF, Xu DS, Guo JS, and Xia DC. Comparative Study on Sizing Properties of Amphoteric Starch and Phosphorylated Starch for Warp Sizing. Fibers and Polymers 2012; 13: 177-184.
  • 5. Marston C, Gabbitas B, and Adams J. The effect of fibre sizing on fibres and bundle strength in hybrid glass carbon fibre composites. Journal of Materials Science 1997; 32: 1415-1423.
  • 6. Merhi D, Michaud V, Comte E, Månson JE. Predicting sizing dependent bending rigidity of glass fibre bundles in sheet moulding compounds. Composites Part A: Applied Science and Manufacturing 2006; 37: 1773-1786.
  • 7. Sellitti C, Vargiu S, Martuscelli E, and Fabbro D. Wettability of glass fibres with different sizings and their adhesion to unsaturated polyester matrices. Journal of Materials Science 1987; 22: 3477-3484.
  • 8. McMican R. Sizing stability is a key element for glass fibre manufacturing. Reinforced Plastics 2012; 56: 29-32.
  • 9. Kaur B, Ariffin F, Bhat R, A. Karim A. Progress in starch modification in the last decade. Food Hydrocolloids 2012; 26: 398-404.
  • 10. Moad G. Chemical modification of starch by reactive extrusion. Progress in Polymer Science 2011; 36: 218-237.
  • 11. Jobling S. Improving starch for food and industrial applications 2004.
  • 12. Marc J.E.C. van der Maarel, Bart van der Veen, Joost C.M. Uitdehaag, Hans Leemhuis, L. Dijkhuizen. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology 2002; 94:137-155.
  • 13. Li ML, Jin EQ, Qiao ZY, and Mao DD. Effects of Graft Modification on the Properties of Chitosan for Warp Sizing. Fibers and Polymers 2015; 16: 1098-1105.
  • 14. Ferrero F, Periolatto M, Burelli S, and Carletto RA. Silk Grafting with Chitosan and Crosslinking Agents. Fibers and Polymers 2010; 11: 185-192.
  • 15. Ashori A, Raverty WD, and Harun J. Effect of Chitosan Addition on the SurfaceProperties of Kenaf (Hibiscus cannabinus) Paper. Fibers and Polymers 2005; 6: 174-179.
  • 16. Bourtoom T, and Chinnan MS. Preparation and properties of rice starchechitosan blend biodegradable film. LWT-Food Science and Technology 2008; 41: 1633-1641.
  • 17. Thomason JL, and Dwight DW. The use of XPS for characterisation of glass fibre coatings. Composites Part A: Applied Science and Manufacturing 1999; 30: 1401-1413.
  • 18. Zhu ZF, Wang M, and Li W. Starch Maleation and Sulfosuccinylation to Alleviate the Intrinsic Drawback of Brittleness of Cornstarch Film for Warp Sizing. Fibers and Polymers 2015; 16: 1890-1897.
  • 19. Feng XY, Zheng K, Wang CP, Chu FX, and Chen Y. Durable Antibacterial Cotton Fabrics with Chitosan Based Quaternary Ammonium Salt. Fibers and Polymers 2016; 17: 371-379.
  • 20. Wang Y, Li H, Wang XD, Lei H and Huo JC. Chemical modification of starch with epoxy resin to enhance the interfacial adhesion of epoxy-based glass fiber composites. RSC Advances 2016; 6: 84187-84193.
  • 21. Farayde MF, Daryne C, Fábio Y, Silvia MM, Rodolfo CJ, Katlen A, Fernanda PC, and Lucia HI. Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers 2013; 95: 681-689.
  • 22. Tuhin MO, Rahman N, Haque ME, Khan RA, Dafader NC, Islam R, Nurnabi M, and Tonny W. Modification of mechanical and thermal property of chitosan–starch blend films. Radiation Physics and Chemistry 2012; 81: 1659-1668.
  • 23. Zhu ZF, Zhou YS, and Li JF. Environment-Friendly Crosslinking of Cornstarch by Pentanedioic Acid for Stabilizing the Viscosity of Starch Paste during Warp Sizing. Fibers and Polymers 2014; 15: 707-715.
  • 24. Yasuo Iida, Toru Tuziuti, Kyuichi Yasui, Atsuya Towata, Teruyuki Kozuka. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies 2008; 9: 140-146.
  • 25. A. Izaguirre, J. Lanas, J.I. Álvarez. Behaviour of a starch as a viscosity modifier for aerial lime-based mortars. Carbohydrate Polymers 2010; 80: 222-228.
  • 26. Wu DX , Shu QY , Wang ZH , Xia YW. Effect of gamma irradiation on starch viscosity and physicochemicalproperties of different rice. Radiation Physics and Chemistry 2002; 65: 79-86.
  • 27. Wongsagonsup R, Shobsngob S, Oonkhanond B, Varavinit S. Zeta Potential (ζ) and Pasting Properties of Phosphorylated or Crosslinked Rice Starches. Starch/Stärke 2005; 57: 32-37.
  • 28. Shukur MF, Ithnin R, and Kadir MFZ. Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 2014; 20: 977-999.
  • 29. Lundqvist H, Eliasson AC, Olofsson G.Binding of hexadecyltrimethylammonium bromide to starch polysaccharides. Part I. Surface tension measurements. Carbohydrate Polymers 2002; 49:109-120.
  • 30. Zhong Y, Song XY, and Li YF. Antimicrobial, physical and mechanical properties of kudzu starch—chitosan composite films as a function of acid solvent types. Carbohydrate Polymers 2011; 84: 335-342.
  • 31. Zhang CH, Xu DS, and Zhu ZF. Octenylsuccinylation of Cornstarch to Improve Its Sizing Properties for Polyester/Cotton Blend Spun Yarns. Fibers and Polymers 2014; 15: 2319-2328.
  • 32. Xu YX, Kim KM, Hanna MA, and Nag D. Chitosan—starch composite film: preparation and characterization. Industrial Crops and Products 2005; 21: 185-192.
  • 33. Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, and Del Nobile MA. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering 2008; 88: 159-168.
  • 34. Dang KM, and Yoksan R. Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers 2015; 115: 575-581.
  • 35. Shim WS, Lee H, and Lee DW. The Interaction of Moving Yarns with Stationary Surfaces. Fibers and Polymers 2013; 14: 164-171.
  • 36. Tanoglu M, Ziaee S, Mcknight SH, Palmese GR, and JR Gillespie JW. Investigation of properties of fiber/matrix interphase formed due to the glass fiber sizings. Journal of Materials Science 2001; 36: 3041-3053.
  • 37. Zinck P, Mäder E, and Gerard J. Role of silane coupling agent and polymeric film former for tailoring glass fiber sizings from tensile strength measurements. Journal of Materials Science 2001; 36: 5245-5252.
  • 38. Cho DH and Jeong Y. Study on the Strength Retention of Technical Cord Yarn. Fibers and Polymers 2006; 7: 305-309.
  • 39. Koo YS. Correlation of Yarn Tension with Parameters in the Knitting Process. Fibers and Polymers 2002; 3: 80-84.
  • 40. Feih S, Thraner A, and Lilhol H. Tensile strength and fracture surface characterisation of sized and unsized glass fibers. Journal of Materials Science 2005; 40: 1615-1623.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4c5d21d-9dfd-46da-8934-f609990afac6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.