PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear vibration of multi-walled carbon nanotubes with initial curvature resting on elastic foundations in a nonlinear thermo-magnetic environment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work focuses on nonlinear dynamics models of multi-walled carbon nanotubes with initial curvature resting on Winkler-Pasternak elastic foundations in a nonlinear thermomagnetic environment using nonlocal elasticity theory. The derived systems of nonlinear vibration models are solved with the aid of the Galerkin decomposition and the homotopy perturbation method. Effects of temperature, magnetic field, multi-layer, and other thermomechanical parameters on the dynamic responses of the slightly curved multi-walled carbon nanotubes are investigated and discussed. As the temperature increases, the frequency ratio decreases as the linear natural frequency of the system increases. The results reveal that the frequency ratios decrease as the number of nanotube walls, temperature, spring constants, magnetic field strength, and the ratio of the radius of curvature to the length of the slightly curved nanotubes increase. These trends are the same for all the boundary conditions considered. However, clamped-simple and clamped-clamped supported multi-walled nanotube have the highest and lowest frequency ratio, respectively. Also, from the parametric studies to control nonlinear vibration of the carbon nanotubes, it is shown that quadruple-walled carbon nanotubes can be taken as pure linear vibration even at any value of linear Winkler and Pasternak constants. Therefore, this can be used for the restraining of the chaos vibration in the objective structure. These research findings will assist the designers and manufacturers in developing multi-walled carbon nanotubes for various structural, electrical, mechanical, and biological applications, especially in the areas of designing nanoelectronics, nanodevices, nanomechanical systems, nanobiological devices, and nanocomposites, and particularly when they are subjected to thermal loads, magnetic fields and elastic foundations.
Rocznik
Strony
87--165
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering University of Lagos Akoka, Lagos, Nigeria
autor
  • Department of Civil and Environmental Engineering University of Lagos Akoka, Lagos, Nigeria
  • Department of Biomedical Engineering University of Lagos Akoka, Lagos, Nigeria
  • Department of Mechanical Engineering University of Lagos Akoka, Lagos, Nigeria
autor
  • Department of Mechanical Engineering University of Lagos Akoka, Lagos, Nigeria
Bibliografia
  • 1. Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348): 56–58, 1991, doi: 10.1038/354056a0.
  • 2. Terrones M., Banhart F., Grobert N., Charlier J.-C., Terrones H., Ajayan P.M., Molecular junctions by joining single-walled carbon nanotubes, Physical Review Letters, 89(7): 07550, 2002, doi: 10.1103/PhysRevLett.89.07550.
  • 3. Nagy P., Ehlich R., Biró L.P., Gyulai J., Y-branching of single walled carbon nanotubes, Applied Physics A, 70(4): 481–483, 2000, doi: 10.1007/s003390051072.
  • 4. Chernozatonskii L.A., Carbon nanotubes connectors and planar jungle gyms, Physics Letters A, 172(3): 173–176, 1992, doi: 10.1016/0375-9601(92)90978-U.
  • 5. Liew K.M., Wong C.H., He X.Q., Tan M.J., Meguid S.A., Nanomechanics of single and multiwalled carbon nanotubes, Physical Review B, 69(11): 115429, 2004, doi: 10.1103/PhysRevB.69.115429.
  • 6. Pantano A., Boyce M.C., Parks D.M., Mechanics of axial compression of single-and multi-wall carbon nanotubes, Journal of Engineering Materials and Technology, 126(3): 279–284, 2004, doi: 10.1115/1.1752926.
  • 7. Pantano A., Parks D.M., Boyce M.C., Mechanics of deformation of single- and multiwall carbon nanotubes, Journal of the Mechanics and Physics of Solids, 52(4): 789–821, 2004, doi: 10.1016/j.jmps.2003.08.004.
  • 8. Qian D., Wagner G.J., Liu W.K., Yu M.-F., Ruoff R.S., Mechanics of carbon nanotubes, Applied Mechanics Reviews, 55(6): 495–533, 2002, doi: 10.1115/1.1490129.
  • 9. Salvetat J.-P., Bonard J.-M., Thomson N.H., Kulik A.J., Forró L., Benoit W., Zuppiroli L., Mechanical properties of carbon nanotubes, Applied Physics A, 69: 255– 260, 1999, doi: 10.1007/978-3-540-36807-6_26.
  • 10. Sears A., Batra R.C., Buckling of carbon nanotubes under axial compression, Physical Review B, 73(8): 085410, 2006, doi: 10.1103/PhysRevB.73.085410.
  • 11. Yoon J., Ru C.Q., Mioduchowski A., Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review B, 66(23): 233402, 2002, doi: 10.1103/Phys RevB.66.233402.
  • 12. Wang X., Cai H., Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes, Acta Materialia, 54(8): 2067–2074, 2006, doi: 10.1016/j.actamat.2005.12.039.
  • 13. Wang C.M., Tan V.B.C., Zhang Y.Y., Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, 294(4–5): 1060–1072, 2006, doi: 10.1016/j.jsv.2006.01.005.
  • 14. Zhang Y., Liu G., Han X., Transverse vibrations of double-walled carbon nanotubes under compressive axial load, Physics Letters A, 340(1–4): 258–266, 2005, doi: 10.1016/j.physleta.2005.03.064.
  • 15. Elishakoff I., Pentaras D., Fundamental natural frequencies of double-walled carbon nanotubes, Journal of Sound and Vibration, 322(4–5): 652–664, 2009, doi: 10.1016/j.jsv.2009.02.037.
  • 16. Buks E., Yurke B., Mass detection with a nonlinear nanomechanical resonator, Physical Review E, 74(4): 046619, 2006, doi: 10.1103/PhysRevE.74.046619.
  • 17. Postma H.W.C., Kozinsky I., Husain A., Roukes M.L., Dynamic range of nanotubeand nanowire-based electromechanical systems, Applied Physics Letters, 86(22): 223105, 2005, doi: 10.1063/1.1929098.
  • 18. Fu Y.M., Hong J.W., Wang X.Q., Analysis of nonlinear vibration for embedded carbon nanotubes, Journal of Sound and Vibration, 296(4–5): 746–756, 2006, doi: 10.1016/j.jsv.2006.02.024.
  • 19. Dequesnes M., Tang Z., Aluru N.R., Static and dynamic analysis of carbon nanotubebased switches, Journal of Engineering Materials and Technology, 126(3): 230–237, 2004, doi: 10.1115/1.1751180.
  • 20. Ouakad H.M., Younis M.I., Nonlinear dynamics of electrically actuated carbon nanotube resonators, Journal of Computational and Nonlinear Dynamics, 5(1): 011009 (13 pages), 2010, doi: 10.1115/1.4000319.
  • 21. Zamanian M., Khadem S.E., Mahmoodi S.N., Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(2): 329–344, 2009, doi: 10.1243/09544062JMES1147.
  • 22. Belhadj A., Boukhalfa A., Belalia S.A., Carbon nanotube structure vibration based on no-nlocal elasticity, Journal of Modern Materials, 3(1): 9–13, 2016, doi: 10.21467/jmm.3.1.9-13
  • 23. Abdel-Rahman E.M., Nayfeh A.H., Secondary resonances of electrically actuated resonant microsensors, Journal of Micromechnics and Microengineering, 13(3): 491–501, 2003.
  • 24. Hawwa M.A., Al-Qahtani H.M., Nonlinear oscillations of a double-walled carbon nanotube, Computational Materials Science, 48(1): 140–143, 2010, doi: 10.1016/ j.commatsci.2009.12.020.
  • 25. Hajnayeb A., Khadem S.E., Nonlinear vibration and stability analysis of a doublewalled carbon nanotube under electrostatic actuation, Journal of Sound and Vibration, 331(10): 2443–2456, 2012, doi: 10.1016/j.jsv.2012.01.008.
  • 26. Xu K.Y., Guo X.N., Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces, Journal of Applied Physics, 99(6): 064303, 2006, doi: 10.1063/1.2179970.
  • 27. Lei X.-W., Natsuki T., Shi J.-X., Ni Q.-Q., Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B: Engineering, 43(1): 64–69, 2012, doi: 10.1016/j.compositesb. 2011.04.032.
  • 28. Ghorbanpour A.A., Zarei M.Sh., Amir S., Khoddami M.Z., Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model, Physica B: Condensed Matter, 410: 188–196, 2013, doi: 10.1016/j.physb.2012.10.037.
  • 29. Yoon J., Ru C.Q., Mioduchowski A., Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review B, 66(23): 233402, 2002, doi: 10.1103/Phys RevB.66.233402.
  • 30. Yoon J., Ru C.Q., Mioduchowski A., Vibration of an embedded multiwall carbon nanotube, Composites Science and Technology, 63(11): 1533–1542, 2003, doi: 10.1016/S0266- 3538(03)00058-7.
  • 31. Ansari R., Hemmatnezhad M., Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach, Mathematical and Computer Modelling, 53(5–6): 927–938, 2011, doi: 10.1016/j.mcm.2010.10.029.
  • 32. Ghorbanpour Arani A., Rabbani H., Amir S., Khoddami Maraghi Z., Mohammadimehr M., Haghparast E., Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium, Journal of Solid Mechanics, 3(3): 258–270, 2011, http://jsm.iau-arak.ac.ir/article_514422.html.
  • 33. Aminikhah H., Hemmatnezhad M., Nonlinear vibrations of multiwalled carbon nanotubes under various boundary conditions, International Journal of Differential Equations, 2011: Article ID 343576, 17 pages, 2011, doi: 10.1155/2011/343576.
  • 34. Wang C.M. Tan V.B.C., Zhang Y.Y., Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, 294(4–5): 1060–1072, 2006, doi: 10.1016/j.jsv.2006.01.005.
  • 35. Aydogdu M., Vibration of multi-walled carbon nanotubes by generalized shear deformation theory, International Journal of Mechanical Sciences, 50(4): 837–844, 2008, doi: 10.1016/j.ijmecsci.2007.10.003.
  • 36. Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54(9): 4703–4710, 1983, doi: 10.1063/1.332803.
  • 37. Eringen A.C., Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10(5): 425–435, 1972, doi: 10.1016/0020- 7225(72)90050-X.
  • 38. Eringen A.C., Edelen D.G.B., On nonlocal elasticity, International Journal of Engineering Science, 10(3): 233–248, 1972, doi: 10.1016/0020-7225(72)90039-0.
  • 39. Eringen A.C., Nonlocal continuum field theories, Springer, New York, 2002.
  • 40. Sobamowo M.G., Nonlinear vibration analysis of single-walled carbon nanotube conveying fluid in slip boundary conditions using variational iterative method, Journal of Applied and Computational Mechanics, 2(4): 208–221, 2016, doi: 10.22055/jacm.2016.12527.
  • 41. Sobamowo M.G., Nonlinear analysis of flow-induced vibration in fluid-conveying structures using differential transformation method with cosine-aftertreatment technique, Iranian Journal of Mechanical Engineering Transactions of the ISME, 18(1): 5–42, 2017.
  • 42. Sobamowo M.G., Nonlinear thermal and flow-induced vibration analysis of fluidconveying carbon nanotube resting on Winkler and Pasternak foundations, Thermal Science and Engineering Progress, 4: 133–149, 2017, doi: 10.1016/j.tsep.2017.08.005.
  • 43. Sobamowo M.G., Ogunmola B., Osheku, C., Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method, Journal of Applied and Computational Mechanics, 3(1): 60–79, 2017, doi: 10.22055/jacm.2017.12620.
  • 44. Arefi A., Nahvi H., Stability analysis of an embedded single-walled carbon nanotube with small initial curvature based on nonlocal theory, Mechanics of Advanced Materials and Structures, 24(11): 962–970, 2017, doi: 10.1080/15376494.2016.1196800.
  • 45. Cigeroglu E., Samandari H., Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method, Physica E: Low-dimensional Systems and Nanostructures, 64: 95–105, 2014, doi: 10.1016/j.physe.2014.07.010.
  • 46. Sobamowo M.G., Akinshilo A.T., Double diffusive magnetohydrodynamic squeezing flow of nanofluid between two parallel disks with slip and temperature jump boundary conditions, Applied and Computational Mechanics, 11(2): 167–182, 2018, doi: 10.24132/acm.2017.367.
  • 47. Sobamowo M.G., Adeleye O.A., Homotopy perturbation method for kinetic analysis of thermal inactivation of jack bean urease, Karbala International Journal of Modern Science, 4(2): 187–199, 2018, doi: 10.1016/j.kijoms.2017.10.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4c35506-d55e-4e44-a43f-a8cffacafa72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.