PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the year 2016, passive biomonitoring studies were conducted in the forest areas of southern and north-eastern Poland: the Karkonosze Mountains (Kark), the Beskidy Mountains (Beskid), Borecka Forest (P. Bor), Knyszynska Forest (P. Kny), and Białowieza Forest (P. Bia). This study used bark from the tree, Betula pendula Roth. Samples were collected in spring (Sp), summer (Su), and autumn (Au). Concentrations of Mn, Fe, Ni, Cu, Zn, Cd, and Pb were determined for the samples using the atomic absorption spectrometry method with flame excitation (F-AAS). Based on the obtained results, the studied areas were ranked according to level of heavy-metal deposition: forests of southern Poland > forests of north-eastern Poland. Some seasonal changes in the concentrations of metals accumulated in bark were also indicated, which is directly related to their changing concentrations in the air during the calendar year, for instance, the winter heating season produces higher concentrations of heavy metals in the bark samples taken in spring. When deciding to do biomonitoring studies using bark, but also other biological materials, it is necessary to take into account the period in which the conducted research is done and the time when the samples are taken for analysis, because this will have a significant impact on the obtained results.
Rocznik
Strony
195--210
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
autor
  • Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
  • Institute of Environmental Engineering and Biotechnology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 51
Bibliografia
  • [1] Kłos A. Porosty w biomonitoringu środowiska (Lichens in environmental biomonitoring). Opole: University of Opole; 2009. ISBN: 9788373952607.
  • [2] Kłos A, Rajfur M, Šramek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184:6765-74. DOI: 10.1007/s10661-011-2456-1.
  • [3] Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25(4):557-68. DOI: 10.1515/eces-2018-0037.
  • [4] Aleksiayenak Y, Frontasyeva M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol Chem Eng S. 2019;26(3):455-64. DOI: 10.1515/eces-2019-0034.
  • [5] Ramachandra TV, Sudarshan PB, Mahesh MK, Vinay S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J Environ Manage. 2018;206:1204-10. DOI: 10.1016/j.jenvman.2017.10.014.
  • [6] Meyer C, Diaz-de-Quijano M, Monna F, Franchi M, Toussaint ML, Gilbert D, et al. Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem. Atmos Environ. 2015;101:286-93. DOI: 10.1016/j.atmosenv.2014.11.041.
  • [7] Allahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017;172:459-67. DOI: 10.1016/j.chemosphere.2017.01.045.
  • [8] Matin G, Kargar N, Buyukisik HB. Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng. 2016;90:331-5. DOI: 10.1016/j.ecoleng.2016.01.035.
  • [9] Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ. 2015;105:53-60. DOI: 10.1016/j.atmosenv.2015.01.032.
  • [10] Cosma C, Iurian AR, Incze R, Kovacs T, Žunić ZS. The use of tree bark as long term biomonitor of 137Cs deposition. J Environ Radioactiv. 2016;153:126-33. DOI: 10.1016/j.jenvrad.2015.12.019
  • [11] Belivermiş M, Kılıç Ö, Çotuk Y, Topcuoğlu S, Kalaycı G, Peştreli D. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition. App Radia Isotopes. 2010;68:2433-7. DOI: 10.1016/j.apradiso.2010.07.010.
  • [12] Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ. 2007;372:693-706. DOI: 10.1016/j.scitotenv.2006.10.029.
  • [13] Forbes PBC, van der Wat L, Kroukamp EM. Chapter 3 - Biomonitors. In: Monitoring of Air Pollutants: Sampling, Sample Preparation and Analytical Techniques. Comprehensive Anal Chem. 2015;70:53-108. DOI: 10.1016/bs.coac.2015.09.003.
  • [14] Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut. 2011;159:3560-70. DOI: 10.1016/j.envpol.2011.08.008.
  • [15] Catinon M, Ayrault S, Spadini L, Boudouma O, Asta J, Tissut M, et al. Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmos Environ. 2011;45:1102-9. DOI: 10.1016/j.atmosenv.2010.11.038.
  • [16] Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, et al. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. 2016;569-570:105-13. DOI: 10.1016/j.scitotenv.2016.06.029.
  • [17] Minganti V, Drava G, Giordani P, Malaspina P, Modenesi P. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark. Environ Sci Pollut Res Int. 2016;23:12467-73. DOI: 10.1007/s11356-016-6485-8.
  • [18] Khokhotva O, Waara S. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater. 2010;173:689-96. DOI: 10.1016/j.jhazmat.2009.08.149.
  • [19] Cocozza C, Ravera S, Cherubini P, Lombardi F, Marchetti M, Tognetti R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban Forestry Urban Green. 2016;17:177-91. DOI: 10.1016/j.ufug.2016.04.008.
  • [20] Drava G, Brignole D, Giordani P, Minganti V. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark. Atmos Environ. 2016;144:370-5. DOI: 10.1016/j.atmosenv.2016.09.009.
  • [21] Drava G, Anselmo M, Brignole D, Giordani P, Minganti V. Branch bark of holm oak (Quercus ilex L.) for reconstructing the temporal variations of atmospheric deposition of hexavalent chromium. Chemosphere. 2017;170:141-5. DOI: 10.1016/j.chemosphere.2016.12.012.
  • [22] Sedumedi HN, Mandiwana KL, Ngobeni P, Panichev N. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter. J Hazard Mater. 2009;172:1686-9. DOI: 10.1016/j.jhazmat.2009.07.111.
  • [23] Dogan Y, Unver MC, Ugulu I, Calis M, Durkan N. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnol Biotechnol Equip. 2014;28:643-9. DOI: 10.1080/13102818.2014.947076.
  • [24] Pacheco AMG, Freitas MC, Barros LIC, Figueira R. Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Chem. 2001;249:327-31. DOI: 10.1023/A:1013293814789.
  • [25] Birke M, Rauch U, Hofmann F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J Geochem Explor. 2018;187:97-117. DOI: 10.1016/j.gexplo.2017.09.007.
  • [26] Pacheco AMG, Freitas MC, Baptista MS, Vasconcelos MTSD, Cabral IJP. Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with in situ lichen. Environ Pollut. 2008;151:326-33. DOI: 10.1016/j.envpol.2007.06.038.
  • [27] Moreira TCL, de Oliveira RC, Lourenço Amato LF, Kang CM, Nascimento Saldiva PH, Saiki M. Intraurban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ Int. 2016;91:271-5. DOI: 10.1016/j.envint.2016.03.005.
  • [28] Nehrenheim E., Gustafsson JP. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour Technol. 2008;99:1571-7. DOI: 10.1016/j.biortech.2007.04.017.
  • [29] Ribé V, Nehrenheim E, Odlare M, Gustavsson L, Berglind R, Forsberg Å. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Manage. 2012;32:1886-94. DOI: 10.1016/j.wasman.2012.05.011.
  • [30] Marć M, Tobiszewski M, Zabiegała B, Guardia MDL, Namieśnik J. Current air quality analytics and monitoring: A review. Anal Chim Acta. 2015;853:116-26. DOI: 10.1016/j.aca.2014.10.018.
  • [31] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.
  • [32] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  • [33] Konieczka P, Namieśnik J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory. A Practical Approach. Second edition. London: CRC Press/Balkema; 2018. ISBN: 9781138196728
  • [34] Klimek B, Tarasek A, Hajduk J. Trace element concentrations in lichens collected in the Beskidy Mountains, the Outer Western Carpathians. Bull Environ Contam Toxicol. 2015;94:532-6. DOI: 10.1007/s00128-015-1478-8.
  • [35] Zakrzewska M, Klimek B. Trace element concentrations in tree leaves and lichen collected along a metal pollution gradient near Olkusz (Southern Poland). Bull Environ Contam Toxicol. 2018;100:245-9. DOI: 10.1007/s00128-017-2219-y.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4bef406-be93-4b66-9646-e0b633cacbb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.