PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Flood Vulnerability Mapping and Risk Assessment Using Hydraulic Modeling and GIS in Tamanrasset Valley Watershed, Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is focused on the integration of the US Army Corps of Engineers Hydrologic Engineering Center (HEC) models, particularly the HEC-RAS (River Analysis System) 1D hydraulic model, into a decision support system for predicting the effects of floods. The study was conducted in the Tamanrasset Valley watershed in Algeria, where the HEC-RAS model was used to calculate water flow profiles for various flood events that occurred downstream. The objective of the study was to generate flood maps for extreme river flood events in the area, which could help assessing the risk of flood vulnerability in the area study. The process involved using the HEC-RAS 1D model to simulate the water flow in the river, taking into account the various flow and boundary conditions. The results of the simulation were then exported and analyzed in GIS-based software, HEC-GeoRAS, to prepare the flood inundation maps. The flood maps were based on the water level at each cross-section, which was calculated using the water surface profiles generated by HEC-RAS. The study aimed to identify flood zones using a combination of HEC-GeoRAS and GIS. The HEC-GeoRAS extension was utilized in a GIS environment to determine flood zones associated with 10-year, 20-year, 50-year, and 100-year return periods. The results of the study confirmed the effectiveness of the integration of GIS and HEC-RAS and demonstrated the performance of the model. Based on these findings, the study recommends the application of this model in planning and management programs for both residential and agricultural areas, to ensure appropriate measures are taken for future flood defense.
Słowa kluczowe
Rocznik
Strony
35--48
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • LARHYSS Laboratory, University of Biskra, 7000, Algeria
  • Faculty of Sciences and Technology, University of Tamanghasset, 11000 Algeria
autor
  • LARHYSS Laboratory, University of Biskra, 7000, Algeria
  • Agence Nationale des Ressources Hydriques, Tamanghasset, 11000, Alegria
  • Faculty of Sciences and Technology, University of Tamanghasset, 11000 Algeria
autor
  • Faculty of Sciences and Technology, University of Tamanghasset, 11000 Algeria
Bibliografia
  • 1. Abdessamed, D., Abderrazak, B. 2019. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 78, 586. https://doi.org/10.1007/s12665-019-8604-6
  • 2. Akan, A.O. 2006. Open channel hydraulics. Butterworth-Heinemann, Amsterdam Boston Heidelberg.
  • 3. Bates, P.D., De Roo, A.P.J. 2000. A simple raster-based model for flood inundation simulation. J. Hydrol. 236, 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X
  • 4. Benaoudj, A. 2014. Les Inondations Dans La Vallee Du M’zab: Genese Et Prediction 15.
  • 5. Bladé, E., Cea, L., Corestein, G. 2014. Modelización numérica de inundaciones fluviales. Ing. Agua, 18, 71–82. https://doi.org/10.4995/ia.2014.3144
  • 6. Breton, C., Marche, C. 2001. Une aide à la décision pour le choix des interventions en zone inondable. Rev. Sci. Eau J. Water Sci. 14, 363–379. https://doi.org/10.7202/705424ar
  • 7. Casas, A., Benito, G., Thorndycraft, V.R., Rico, M. 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landf. 31, 444–456. https://doi.org/10.1002/esp.1278
  • 8. De Wrachien, D., Mambretti, S., Schultz, B. 2011. Flood management and risk assessment in flood-prone areas: Measures and solutions. Irrig. Drain. 60, 229–240. https://doi.org/10.1002/ird.557
  • 9. Emsalem, R. 1955. Jean Dubief, Essai sur l’hydrologie superficielle au Sahara. Géocarrefour 30, 77–78.
  • 10. Giannaros, C., Kotroni, V., Lagouvardos, K., Oikonomou, C., Haralambous, H., Papagiannaki, K. 2020. Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece). Water, 12, 2426. https://doi.org/10.3390/w12092426
  • 11. Hafnaoui, M.A., Hachemi, A., Said, M.B., Noui, A., Fekraoui, F., Madi, M., Mghezzi, A. 2013. Vulnerabilite aux inondations dans les regions sahariennescas de doucen, 8.
  • 12. Hafnaoui, M.A., Madi, M., Hachemi, A., Farhi, Y. 2020. El Bayadh city against flash floods: case study. Urban Water J. 17, 390–395. https://doi.org/10.1080/1573062X.2020.1714671
  • 13. Hamdine, D.O. 2001. Conservation du Guépard (Acinonyx jubatus Schreber, 1776) dans les régions de: l’Ahaggar et du Tassili N’Adjer (En Algérie).
  • 14. Huber, W.C. 2012. Hydrologic Modeling Processes of the EPA Storm Water Management Model (SWMM), 1–10. https://doi.org/10.1061/40685(2003)164
  • 15. Jagadeesh, B., Veni, K.K. 2021. Flood Plain Modelling of Krishna Lower Basin Using Arcgis, Hec-Georas And Hec-Ras. IOP Conf. Ser. Mater. Sci. Eng. 1112, 012024. https://doi.org/10.1088/1757-899X/1112/1/012024
  • 16. Jonkman, S.N., Bočkarjova, M., Kok, M., Bernardini, P. 2008. Integrated hydrodynamic and economic modelling of flood damage in the Netherlands. Ecol. Econ., Special Section: Integrated Hydro-Economic Modelling for Effective and Sustainable Water Management, 66, 77–90. https://doi.org/10.1016/j.ecolecon.2007.12.022
  • 17. Lastra, J., Fernández, E., Díez-Herrero, A., Marquínez, J. 2008. Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Nat. Hazards, 45, 277–293. https://doi.org/10.1007/s11069-007-9164-8
  • 18. Madi, H., Mouzai, L., Bouhadef, M. 2013. Plants cover effects on overland flow and on soil erosion under simulated rainfall intensity. Int. J. Environ. Ecol. Eng. 7, 561–565.
  • 19. Menad, W., Douvinet, J., Beltrando, G., Arnaud-Fassetta, G. 2012. Evaluer l’influence de l’urbanisation face à un aléa météorologique remarquable : les inondations des 9-10 novembre 2001 à Bab-el-Oued (Alger, Algérie). Géomorphologie Relief Process. Environ. 18, 337–350. https://doi.org/10.4000/geomorphologie.9954
  • 20. Merz, B., Kreibich, H., Schwarze, R., Thieken, A. 2010. Review article “Assessment of economic flood damage.” Nat. Hazards Earth Syst. Sci. 10, 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010
  • 21. Naiji, Z., Mostafa, O., Amarjouf, N., Rezqi, H. 2021. Application of two-dimensional hydraulic modelling in flood risk mapping. A case of the urban area of Zaio, Morocco. Geocarto Int. 36, 180–196. https://doi.org/10.1080/10106049.2019.1597389
  • 22. Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira, S., Kahraman, A., Kılıç, Ö., Kotroni, V., Llasat, M.C., Llasat-Botija, M., Papagiannaki, K., Pasqua, A.A., Řehoř, J., Rossello Geli, J., Salvati, P., Vinet, F., Zêzere, J.L. 2019. Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn. Water, 11, 1682. https://doi.org/10.3390/w11081682
  • 23. Porter, J.R., Shu, E., Amodeo, M., Hsieh, H., Chu, Z., Freeman, N. 2021. Community Flood Impacts and Infrastructure: Examining National Flood Impacts Using a High Precision Assessment Tool in the United States. Water, 13, 3125. https://doi.org/10.3390/w13213125
  • 24. Raaijmakers, R., Krywkow, J., van der Veen, A. 2008. Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation. Nat. Hazards, 46, 307–322. https://doi.org/10.1007/s11069-007-9189-z
  • 25. Raeli, M., Ceglie, V., Baourakis, G., Agrokipio, A. 2016. Monitoring vegetation and surface water dynamics of Wadi Tamanrasset using earth observation data - Sécheresse info.
  • 26. Rivera, S., Hernandez, A., Ramsey, R., Suarez, G., Rodriguez, S.A. 2007. Predicting flood hazard areas: A SWAT and HEC-RAS simulations conducted in aguan river basin of honduras, central America, 2, 594–603.
  • 27. Sassi, M., Nicotina, L., Pall, P., Stone, D., Hilberts, A., Wehner, M., Jewson, S. 2019. Impact of climate change on European winter and summer flood losses. Adv. Water Resour. 129, 165–177. https://doi.org/10.1016/j.advwatres.2019.05.014
  • 28. Yamani, K., Hazzab, A., Sekkoum, M., Slimane, T. 2016. Mapping of vulnerability of flooded area in arid region. Case study: area of Ghardaïa-Algeria. Model. Earth Syst. Environ. 2, 147. https://doi.org/10.1007/s40808-016-0183-x
  • 29. Zhang, Q., Gu, X., Singh, V.P., Xiao, M. 2014. Flood frequency analysis with consideration of hydrological alterations: Changing properties, causes and implications. J. Hydrol. 519, 803–813. https://doi.org/10.1016/j.jhydrol.2014.08.011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4bd28c9-3a35-44f0-bd09-0cfc0b48f823
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.