PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A calculation model for liquid-liquid extraction of protactinium by 2,6-dimethyl-4-heptanol

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Workshop “Towards safe and optimized separation processes, a challenge for nuclear scientists” (FP7 European Collaborative Project SACSESS) (22-24.04.2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Reprocessing of spent nuclear fuel usually employs the solvent extraction technique to recover fissile material, isolate other valuable radionuclides, recover precious metals, and remove contaminants. Effi cient recovery of these species from highly radioactive solutions requires a detailed understanding of reaction conditions and metal speciation that leads to their isolation in pure forms. Due to the complex nature of these systems, identification of ideal reaction conditions for the efficient extraction of specific metals can be challenging. Thus, the development of experimental approaches that have the potential to reduce the number of experiments required to identify ideal conditions are desirable. In this study, a full-factorial experimental design was used to identify the main effects and variable interactions of three chemical parameters on the extraction of protactinium (Pa). Specifi cally we investigated the main effects of the anion concentration (NO3 –, Cl–) extractant concentration, and solution acidity on the overall extraction of protactinium by 2,6-dimethyl-4-heptanol (diisobutylcarbinol; DIBC) from both HCl and HNO3 solutions. Our results indicate that in HCl, the extraction of protactinium was dominated by the solution acidity, while in nitric acid the extraction was strongly effected by the [DIBC]. Based on our results, a mathematical model was derived, that describes the relationship between concentrations of anions, extractant, and solution acidity and the expected values of Pa distribution coefficients in both HCl and HNO3. This study demonstrates the potential to predict the distribution coefficient values, based upon a mathematical model generated by a full-factorial experimental design.
Czasopismo
Rocznik
Strony
837--845
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Department of Chemistry, E373 CB, The University of Iowa, Iowa City, IA 52246, USA
  • Department of Chemistry, E373 CB, The University of Iowa, Iowa City, IA 52246, USA
autor
  • Interdisciplinary Human Toxicology Program, E373 CB, The University of Iowa, Iowa City, IA 52246, USA
  • Department of Chemistry, E373 CB, The University of Iowa, Iowa City, IA 52246, USA
  • Interdisciplinary Human Toxicology Program, E373 CB, The University of Iowa, IA 52246, USA
  • Departments of Radiology and Radiation Oncology (Free Radical and Radiation Biology Program), The University of Iowa, ML B180 FRRB, 500 Newton Road, Iowa City, IA 52246, USA, Tel.: +1 319 335-8017
Bibliografia
  • 1. King, J.C. (1987). The impact of separation science and technology on some key technological challenges facing society. In R. Price (Ed.), Separation and purification: Critical needs and opportunities. Washington, D. C., USA: National Academy Press.
  • 2. Nuclear Energy Agency with Working Party on Nuclear Criticality Safety and Expert Group on Assay Data of Spent Nuclar Fuel. (2011). Spent nuclear fuel assay data for isotopic validation. Organisation for Economic Co-operation and Development. NEA.
  • 3.International Atomic Energy Agency. (2007). Use of reprocessed uranium. In Technical Committee Meeting. Vienna, Austria: IAEA. (IAEA-TECDOC-CD-1630).
  • 4.Simpson, M. F., & Law, J. D. (2010). Nuclear fuel reprocessing. Idaho Falls, Idaho: Idaho National Laboratory. (INL/EXT-10-17753).
  • 5. Kirby, H. W. (1959). The radiochemistry of protactinium. National Academy of Sciences National Research Council. (Nuclear Series, NAS-NS 3016).
  • 6. Rydberg, J., Musikas, C., Choppin, G. R., & Cox, M. (2004). Solvent extraction principles, and practices. 2nd ed. New York: Marcel Dekker.
  • 7. Multi-Agency Radiological Laboratory Analytical Protocols Manual. (2004). 14.4 Solvent Extraction. (NUREG-1576), (EPA 402-B-04-001A), (NTIS PB2004-105421).
  • 8. U. S. Department of Energy. (2011). Nuclear separations technologies workshop report: Getting from where we are to where we want to be in nuclear separations technologies. Bethesda, Maryland.
  • 9. Kumari, N., Pathak, P. N., Prabhu, D. R., & Manchanda, V. K. (2012). Solvent extraction studies of protactinium for its recovery from short-cooled spent fuel and high-level waste solutions in thorium fuel cycle using diisobutyl carbinol (DIBC) as extractant. Desalin. Water Treat., 38(1/3), 46–51. DOI: 10.5004/DWT.2012.2292.
  • 10. Rampolla, D. S. (1982). U. S. Patent No. 4,344,912A. Method of increasing the deterrent to proliferation of nuclear fuels. U. S. Department of Energy.
  • 11. National Nuclear Data Center. (2015). Infomation extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2.
  • 12. Eppich, G. R., William, R. W., Gaffney, A. M., & Schorzman, K. C. (2013). U-235-Pa-231 age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom., 28(5), 666–674. DOI: 10.1039/C3ja50041a.
  • 13. Trianti, N., Su’ud, Z., & Riyana, E. S. (2012). Design study of thorium-232 and protactinium-231 based fuel for long life BWR. In 3rd International Conference on Advances in Nuclear Science and Engineering. (1448, pp. 96–100).
  • 14. Imamura, T., Saito, M., Yoshida, T., & Artisyuk, V. (2004). Production of Pa-U fuel with proliferation resistance by 14 MeV neutron for long-life core. J. Nucl. Sci. Technol., 40(6), 655–664.
  • 15. Tsvetkov, P. V., Kryuchkov, E. F., Shmelev, A. N., Apse, V. A., Kulikov, G. G., Masterov, S. V., Kulikov, E. G., & Glebov, V. B. (2011). Isotopic uranium and plutonium denaturing as an effective method for nuclear fuel proliferation protection in open and closed fuel cycles. In P. Tsvetkov (Ed.), Nuclear power – deployment, operation and sustainability (Chapter 14). Winchester, UK: InTech.
  • 16. Myasoedov, B. F., Kirby, H. W., & Tananaev, I. G. (2010). Protactinium. In L. R. Morss, N. M. Edelstein, & J. Fuger (Eds.), The chemistry of the actinide and transactinide elements. Vol. 1. Dordrecht, Netherlands: Springer.
  • 17. Berry, J. A., Hobley, J., Lane, S. A., Littleboy, A. K., Nash, M. J., Oliver, P., Smith-Briggs, J. L., & Williams, S. J. (1989). Solubility and sorption of protactinium in near-field and far-field environments of a radioactive waste repository. Analyst, 114, 339–347.
  • 18. Forbes, T. Z., Burns, P. C., Soderholm, L., & Skanthakumar, S. (2007). Hydrothermal synthesis and structure of neptunium(V) oxide. In D. Dunn, C. Poinssot, & B. Begg (Eds.), Scientific basis for nuclear wastemanagement XXX, (Vol. 985, pp. 401–406). Cambridge, UK: Cambridge University Press.
  • 19. De Sio, S. M., & Wilson, R. E. (2014). Structural andspectroscopic studies of fluoroprotactinates. Inorg. Chem., 53(3), 1750–1755.
  • 20. Eskandari Nasab, M. (2014). Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel, 116, 595–600.
  • 21. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., & Schultz, M. K. (2015). A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-015-4124-3.
  • 22. Hill, C. (2010). Overview of recent advances in An(III)/Ln(III) separation by solvent extraction. In B. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119–193). Boca Raton: CRC Press.
  • 23. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design analysis and model building. New York: John Wiley and Sons.
  • 24. Schultz, M. K., Inn, K. G. W., Lin, Z. C., Burnett, W. C., Smith, G., Biegalski, S. R., & Filliben, J. (1998). Identification of radionuclide partitioning in soils and sediments: Determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl. Radiat. Isot., 49(9/11), 1289–1293.
  • 25. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Anal. Chem., 40(3), 586–593.
  • 26. Burnett, W. C., & Yeh, C. C. (1995). Separation of protactinium from geochemical materials via extraction chromatography. Radioact. Radiochem., 6(4), 22–32.
  • 27. Regelous, M., Turner, S. P., Elliot, T. R., Rostami, K., & Hawkesworth, C. J. (2004) Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. Anal. Chem., 76(13), 3584–3589.
  • 28. Knight, A. W., Eitrheim, E. S., Nelson, A. W., Nelson, S., & Schultz, M. K. (2014). A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioact., 134, 66–74.
  • 29. Silva, A., Delerue-Matos, C., & Fiuza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. J. Hazard. Mater., 124(1/3),224–229.
  • 30. Scherff, H. -L., & Herrmann, G. (1966). Ionic species of pentavalent protactinium in hydrochloric acid solutions. Radiochim. Acta, 6(2), 53–61.
  • 31. Casey, A. T., & Maddock, A. G. (1959). The chemistry of protactinium – some spectrophotometric observations. J. Inorg. Nucl. Chem., 10(1/2), 58–68.
  • 32. Guillaumont, R., Muxart, R., Bouissieres, G., & Haissinsky, M. (1960). Spectres Dabsorption Du Protactinium En Solution Aqueuse. J. Chim. Phys. Phys.-Chim. Biol., 57(11/12), 1019–1028.
  • 33. Hardy, C. J., Scargill, D., & Fletcher, J. M. (1958). Studies on protactinium(V) in nitric acid solutions. J. Inorg. Nucl. Chem., 7(3), 257–275.
  • 34. Spitsyn, V. I., & Dyachkov, R. A. (1964). Concentrating 231Pa from uranium production waste. J. Nucl. Energy AB, 18(12PA), 731.
  • 35. Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.
  • 36. Spitsyn, V. I., Dyachkov, R. A., & Khlebnikov, V. P. (1964). State of protactinium in nitrate solutions. Dokl. Akad. Nauk SSSR, 157(1), 135–138.
  • 37. Theil, H. (1971). Principles of econometrics. New York: John Wiley & Sons.
  • 38. Theil, H. (1961). Economic forecasts and policy. 2nd ed. Amsterdam: North-Holland Publ. Co.
  • 39. Anderson, M. J., & Whitcomb, P. J. (2007). DOE Simplified: Practical tools for effective experimentation. New York: Productivity.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4b9883a-83cd-4703-a494-1fddb2e89adc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.