Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An analytical solution of a two-dimensional advection diffusion equation with time dependent coefficients is obtained by using Laplace Integral Transformation Technique. The horizontal medium of solute transport is considered of semi-infinite extent along both the longitudinal and lateral directions. The input concentration is assumed at an intermediate position of the domain. It helps to evaluate concentration level along the flow as well as against the flow through one model only. The source of the input concentration is considered to be of pulse type. In the presence of the source, it is assumed to be decreasing very slowly with time, and just after the elimination of the source it is assumed to be zero. The dispersion coefficient and the advection parameter are considered directly proportional to each other. The analytical solution may be used to predict the solute concentration level with position and time in an open medium as well as in a porous medium. The effect of heterogeneity on the solute transport may also be predicted.
Wydawca
Czasopismo
Rocznik
Tom
Strony
214--231
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad, India
autor
- Department of Mathematics, C.V. Raman College of Engineering, Bhubaneswar, India
autor
- Department of Mathematics, Banaras Hindu University, Varanasi, India
Bibliografia
- 1. Aral, M.M., and B. Liao (1996), Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients, J. Hydrol. Eng. 1, 1, 20-32, DOI: 10.1061/(ASCE)1084-0699(1996)1:1(20).
- 2. Banks, R.B., and S.J. Jerasate (1962), Dispersion in unsteady porous media flow, J. Hydraul. Div. 88, 1-21.
- 3. Batu, V. (1989), A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source, Water Resour. Res. 25, 6, 1125-1132, DOI: 10.1029/WR025i006p01125.
- 4. Batu, V. (1993), A generalized two-dimensional analytical solutetransport model in bounded media for flux-type finite multiple sources, Water Resour. Res. 29, 8, 2881-2892, DOI: 10.1029/93WR00977.
- 5. Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
- 6. Carnahan, C.L., and J.S. Remer (1984), Non-equilibrium and equilibrium sorption with a linear sorption isotherm during mass transport through an infinite porous media: Some analytical solutions, J. Hydrol. 73, 3-4, 227-258, DOI: 10.1016/0022-1694(84)90002-7.
- 7. Chen, J.-S., and C.-W. Liu (2011), Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition, Hydrol. Earth Syst. Sci. 15, 8, 2471-2479, DOI: 10.5194/hess-15-2471-2011.
- 8. Chen, J.-S., K.-H. Lai, C.-W. Liu, and C.-F. Ni (2012a), A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions, J. Hydrol. 420-421, 191-204, DOI: 10.1016/j.jhydrol.2011.12.001.
- 9. Chen, J.-S., C.-W. Liu, C.-P. Liang, and K.-H Lai (2012b), Generalized analytical solutions to sequentially coupled multispecies advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition, J. Hydrol. 456-457, 101-109, DOI: 10.1016/j.jhydrol.2012.06.017.
- 10. Crank, J. (1975), The Mathematics of Diffusion, Oxford Univ. Press, Oxford.
- 11. Dagan, G. (1984), Solute transport in heterogeneous porous formations, J. Fluid Mech. 145, 151-177, DOI: 10.1017/S0022112084002858.
- 12. Domenico, P.A., and F.W. Schwartz (1997), Physical and Chemical Hydrogeology, John Wiley & Sons, New York.
- 13. Ebach, E.A., and R.R. White (1958), Mixing of fluids flowing through beds of packed solids, AIChE J. 4, 2, 161-169, DOI: 10.1002/aic.690040209.
- 14. Freeze, R.A., and J.A. Cherry (1979), Groundwater, Prentice-Hall, New Jersey.
- 15. Fried, J.J. (1975), Groundwater Pollution, Developments in Water Science, Vol. 4, Elsevier, Amsterdam.
- 16. Fried, J.J., and M.A. Combarnous (1971), Dispersion in porous media. In: V.T. Chow (ed.),Advances in Hydroscience, Vol. 7, 169-282, Academic Press, New York.
- 17. Goltz, M.N., and P.V. Roberts (1986), Three-dimensional solutions for solute transport in an infinite medium with mobile and immobile zones, Water Resour. Res. 22, 7, 1139-1148, DOI: 10.1029/WR022i007p01139.
- 18. Guerrero, J.S.P., L.C.G. Pimentel, T.H. Skaggs, and M.Th. van Genuchten (2009), Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique, Int. J. Heat. Mass. Transfer 52, 13-14, 3297-3304, DOI:10.1016/j.ijheatmasstransfer.2009.02.002.
- 19. Jaiswal, D.K., A. Kumar, N. Kumar, and M.K. Singh (2011), Solute transport along temporally and spatially dependent flows through horizontal semi-infinite media: Dispersion proportional to square of velocity, J. Hydrol. Eng. 16, 3, 228-238, DOI: 10.1061/(ASCE)HE.1943-5584.0000312.
- 20. Javandel, I., C. Doughty, and C.F. Tasang (1984), Groundwater Transport: Hand-book of Mathematical Models, Water Resources Monogr., Vol. 10, AGU, Washington DC.
- 21. Kumar, A., D.K. Jaiswal, and R.R. Yadav (2011), One-dimensional solute transport for uniform and varying pulse type input point source with temporally dependent coefficients in longitudinal semi-infinite homogeneous porous domain, Int. J. Math. Sci. Comput. 1, 2, 56-66.
- 22. Kumar, N., and M. Kumar (1998), Solute dispersion along unsteady groundwater flow in a semi-infinite aquifer, Hydrol. Earth Syst. Sci. 2, 1, 93-100, DOI: 10.5194/hess-2-93-1998.
- 23. Leij, F.J., T.H. Skaggs, and M.Th. van Genuchten (1991), Analytical solutions for solute transport in three-dimensional semi-infinite porous media, Water Resour. Res. 27, 10, 2719-2733, DOI: 10.1029/91WR01912.
- 24. Marshal, T.J., J.W. Holmes, and C.W. Rose (1996), Soil Physics, 3rd ed., Cambridge University Press, Cambridge.
- 25. Matheron, G., and G. De Marsily (1980), Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 5, 901-917, DOI: 10.1029/WR016i005p00901.
- 26. Pickens, J.F., and G.E. Grisak (1981), Scale-dependent dispersion in a stratified gramular aquifer, Water Resour. Res. 17, 4, 1191-1211, DOI: 10.1029/WR017i004p01191.
- 27. Sander, G.C., and R.D. Braddock (2005), Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media, Adv. Water Resour. 28, 10, 1102-1111, DOI: 10.1016/j.advwatres. 2004.10.010.
- 28. Scheidegger, A. (1957), The Physics of Flow Through Porous Media, Univ. of Toronto Press, Toronto.
- 29. Serrano, S.E. (1995), Forecasting scale-dependent dispersion from spills in heterogeneous aquifers, J. Hydrol. 169, 1-4, 151-169, DOI: 10.1016/0022-1694(94)02663-V.
- 30. Singh, M.K., N.K. Mahato, and P. Singh (2008), Longitudinal dispersion with time-dependent source concentration in semi-infinite aquifer, J. Earth Syst. Sci. 117, 6, 945-949, DOI: 10.1007/s12040-008-0079-x.
- 31. Singh, M.K., P. Singh, and V.P. Singh (2010), Analytical solution for two-dimensional solute transport in finite aquifer with time-dependent source concentration, J. Eng. Mech. 136, 10, 1309-1315, DOI: 10.1061/(ASCE)EM.1943-7889.0000177.
- 32. Suciu, N. (2010), Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields, Phys. Rev. E81, 5, 056301, DOI: 10.1103/PhysRevE.81.056301.
- 33. Suciu, N. (2014), Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69, 114-133, DOI: 10.1016/j.advwatres.2014.04.002.
- 34. Sudicky, E.A., H.-T. Hwang, W.A. Illman, Y.-S. Wu, J.B. Kool, and P. Huyakorn (2013), A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions, J. Contam. Hydrol. 144, 1, 20-45, DOI: 10.1016/j.jconhyd.2012.10.001.
- 35. Suresh Kumar, G., M. Sekhar, and D. Misra (2008), Time-dependent dispersivity of linearly sorbing solutes in a single fracture with matrix diffusion, J. Hydrol. Eng. 13, 4, 250-257, DOI: 10.1061/(ASCE)1084-0699(2008)13:4(250).
- 36. Tartakovsky, D.M. (2000), An analytical solution for two-dimensional contaminant transport during groundwater extraction, J. Contam. Hydrol. 42, 2-4, 273-283, DOI: 10.1016/S0169-7722(99)00086-8.
- 37. Taylor, G. (1953), Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. London A 219, 1137, 186-203, DOI: 10.1098/rspa.1953.0139.
- 38. van Genuchten, M.Th., and W.J. Alves (1982), Analytical solutions of the one-dimensional convective-dispersion solute transport equation, Tech. Bull. No. 1661, US Department of Agriculture, Washington D.C.
- 39. Warrick, A.W., J.W. Biggar, and D.R. Nielsen (1971), Simultaneous solute and water transfer for an unsaturated soil, Water Resour. Res. 7, 5, 1216-1225, DOI: 10.1029/WR007i005p01216.
- 40. Wilson, J.L., and P.J. Miller (1978), Two-dimensional plume in uniform ground-water flow, J. Hydraul. Div. 104, 4, 503-514.
- 41. Yates, S.R. (1988), Three-dimensional radial dispersion in a variable velocity flow field, Water Resour. Res. 24, 7, 1083-1090, DOI: 10.1029/WR024i007p01083.
- 42. Zoppou, C., and J.H. Knight (1997), Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients, ASCE J. Hydraul. Eng. 123,2, 144-148, DOI: 10.1061/(ASCE)0733-9429(1997)123:2(144).
- 43. Zoua, S., J. Ma, and A.D. Koussis (1996), Analytical solutions to non-Fickian sub-surface dispersion in uniform groundwater flow, J. Hydrol. 179, 1-4, 237-258, DOI: 10.1016/0022-1694(95)02830-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4b2e4a1-64ad-4209-aace-ea05d2ad8bd4