PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A flexible approach to combating chromatic dispersion in a centralized 5G network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes and examines a solution in which the base-station for the fifth generation radio access network is simplified by using a single millimeter-wave oscillator in the central-station and distributing its millimeter-wave signal to the base-stations. The system is designed in such a way that the low-phase-noise signal generated by an opto-electronic oscillator is transmitted from the central-station to multiple base-stations via a passive optical network infrastructure. A novel flexible approach with a single-loop opto-electronic oscillator at the transmitting end and a tunable dispersion-compensation module at the receiving end(s) is proposed to distribute a power-penalty-free millimeter-wave signal in the radio access network. Power-penalty-free signal transmission from 10 MHz up to 45 GHz with an optical length of 20 km is achieved by a combination of a tunable dispersion-compensation module and an optical delay line. In addition, measurements with a fixed modulation frequency of 39 GHz and discretely incrementing optical fiber lengths from 0.625 km to 20 km are shown. Finally, a preliminary idea for an automatically controlled feedback-loop tuning system is proposed as a further research entry point.
Rocznik
Strony
35--42
Opis fizyczny
Bibliogr. 40 poz., wykr., rys., tab.
Twórcy
  • University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia Trzaska Cesta 25, SI1000, Ljubljana
  • University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia Trzaska Cesta 25, SI1000, Ljubljana
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia Trzaska Cesta 25, SI1000, Ljubljana
Bibliografia
  • [1] Sun, H., Zhang, Z., Hu, R. Q. & Qian, Y. Wearable communications in 5G: Challenges and enabling technologies. IEEE Veh. Technol. Mag. 13, 3, 100-109 (2018). https://doi.org/10.1109/MVT.2018.2810317.
  • [2] Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K. & Zhang J. C. What will 5G be? IEEE J. Sel. Areas Commun..32, 6, 1065-1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098.
  • [3] Pirinen, P. A Brief overview of 5G research activities. in 1st International Conference on 5G for Ubiquitous Connectivity (2014).
  • [4] Patzold, M. It’s time to go big with 5G [mobile radio], IEEE Veh. Technol. Mag. 13, 4, 4-10 (2018). https://doi.org/10.1109/MVT.2018.2869728.
  • [5] Andrus, B., Autenrieth, A., Pachnicke, S., Zou, S., Olmos, J. J. V., & Monroy, I. T. Performance evaluation of NETCONF-based low latency cross-connect for 5G C-RAN architectures. in 20th International Conference on Transparent Optical Networks (ICTON) (2018).
  • [6] Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You X. & Hanzo L. Low-latency C-RAN: An next-generation wireless approach. IEEE Veh. Technol. Mag. 13, 2, 48-56 (2018). https://doi.org/10.1109/MVT.2018.2811244.
  • [7] Lin, J.-C. Synchronization requirements for 5G: An overview of standards and specifications for cellular networks. IEEE Veh. Technol. Mag. 13, 3, 91-99 (2018). https://doi.org/10.1109/MVT.2018.2813339.
  • [8] Ilgaz, M.A. & Batagelj, B. Proposal for the distribution of a lowphase-noise oscillator signal in the forthcoming fifth-generation mobile network by radio-over-fibre technology. In International Symposium ELMAR (2016).
  • [9] Capmany, J. & Muñoz, P. Integrated microwave photonics for radio access networks. J. Lightw. Technol. 32, 16, 2849-2861 (2014). https://doi.org/10.1109/JLT.2014.2333369.
  • [10] 3GPP Technical Specification Group Radio Access Network. NR, Physical layer procedures for control. TS 38.213 V15.3.0.
  • [11] Eliyahu, D., Seidel, D. & Maleki, L. Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system. in IEEE International Frequency Control Symposium (2008).
  • [12] Ilgaz, M.A. & Batagelj, B. Using tunable dispersion- compensated modules to overcome the power penalty of a millimeter-wave optoelectronic oscillator signal that is distributed via a passive optical network for 5G networks. in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (2018).
  • [13] Hao, T., Tang, J., Domenech, D., Li, W., Zhu, N., Capmany, J. & Li, M. Toward monolithic integration of OEOs: From systems to chips. J. Lightw. Technol. 36, 19, 4565-4582 (2018). https://doi.org/10.1109/JLT.2018.2825246.
  • [14] Hosseini, S. E., Karimi, A. & Jahanbakht, S. Q-factor of optical delay-line based cavities and oscillators. Opt. Commun. 407, 349-354 (2018). https://doi.org/10.1016/j.optcom.2017.09.077.
  • [15] Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 8, 1725-1735 (1996). https://doi.org/10.1364/JOSAB.13.001725.
  • [16] Tang, J., Hao, T., Li, W., Domenech, D., Banos, R., Munoz, P., Zhu,N., Capmany, J. & Li, M. Integrated optoelectronic oscillator. Opt.Express 26, 9, 12257-12265 (2018). https://doi.org/10.1364/OE.26.012257.
  • [17] Lelièvre, O., Crozatier, V., Baili, G., Berger, P., Pillet, G., Dolfi, D., Morvan, L., Goldfarb, F., Bretenaker, F. & Llopis, O. Ultra-low phase noise 10 GHz dual loop optoelectronic oscillator. in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016).
  • [18] Lee, K., Kim, J. & Choi, W. Injection-locked hybrid optoelectronic oscillators for single-mode oscillation. IEEE Photon. Technol. Lett. 20, 19, 1645-1647 (2008). https://doi.org/10.1109/LPT.2008.2002743.
  • [19] Li, M., Li, W. & Yao, J. Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photon. Technol. Lett. 24, 14, 1251-1253 (2012). https://doi.org/10.1109/LPT.2012.2201462.
  • [20] Li, W. & Yao, J. An optically tunable optoelectronic oscillator. J. Lightw. Technol., 28, 18, 2640-2645 (2010). https://doi.org/10.1109/JLT.2010.2058792.
  • [21] Li, W. & Yao, J. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microw. Theory Techn. 60, 6, 1735-1742 (2012). https://doi.org/10.1109/TMTT.2012.2189231.
  • [22] Jiang, F., Wong, J. H., Lam, H. Q., Zhou, J., Aditya, S., Lim, P. H., Lee, K. E. K., Shum, P. P. & Zhang, X. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter. Opt. Express 21, 14, 16381-16389 (2013). https://doi.org/10.1364/OE.21.016381.
  • [23] Tratnik, J., Pavlovic, L., Batagelj, B., Lemut, P., Ritosa, P., Ferianis, M. & Vidmar, M. Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision. Microw. and Opt. Tech. Lett. 53, 7, 1553-1555 (2011). https://doi.org/10.1002/mop.26087.
  • [24] Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S. & Dittmann, L. Cloud RAN for mobile networks- a technology overview. IEEE Commun. Surveys Tuts. 17, 1, 405-426 (2015). https://doi.org/10.1109/COMST.2014.2355255.
  • [25] Ilgaz, M. A. & Batagelj, B. Preliminary idea for a converged fixed and mobile network infrastructure with 5G using radio-over-fiber technology and an opto-electronic oscillator in the millimeter-wave range. in 18th International Conference on Transparent Optical Networks (ICTON) (2016).
  • [26] Optical fibres, cables and systems. ITU-T Manual. 2009.
  • [27] Patel, D., Singh, V. K. & Dalal, U. D. Assessment of fiber chromatic dispersion based on elimination of second-order harmonics in optical OFDM single sideband modulation using Mach Zehnder modulator. Fiber Integrated Opt. 35, 4, 181-195 (2016). https://doi.org/10.1080/01468030.2016.1195899.
  • [28] Gliese, U., Norskov, S. & Nielsen, T. N. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Trans. Microw. Theory Techn. 44, 10, 1716-1724 (1996). https://doi.org/10.1109/22.538964.
  • [29] Schmuck, H. Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion. Electron. Lett. 31, 21, 1848-1849 (1995).
  • [30] Park, J., Sorin, W. V. & Lau, K. Y. Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission. Electron. Lett. 33, 6, 512-513 (1997). https://doi.org/10.1049/el:19970325.
  • [31] Matsuda, T., Naka, A. & Saito, S. Comparison between NRZ and RZ signal formats for in-line amplifier transmission in the zerodispersion regime. J. Lightw. Technol. 16, 3, 340-348 (1998). https://doi.org/10.1109/50.661359.
  • [32] Naka, A. & Saito, S. In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion. J. Lightw. Technol. 12, 2, 280-287 (1994). https://doi.org/10.1109/50.350593.
  • [33] Marcuse, D. Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion. J. Lightw. Technol. 9, 3, 356-361 (1991). https://doi.org/10.1109/50.70012.
  • [34] Lamminpää, A., Niemi, T., Ikonen, E., Marttila, P. & Ludvigsen, H. Effects of dispersion on nonlinearity measurement of optical fibers. Opt. Fiber Technol. 11, 3, 278-285 (2005). https://doi.org/10.1016/j.yofte.2004.11.002.
  • [35] Wu, T.-L. & Chao, C.-H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photon. Technol. Lett. 17, 1, 67-69 (2005). https://doi.org/10.1109/LPT.2004.837475.
  • [36] Karim, F. Synthesis of dispersion-compensating triangular lattice index-guiding photonic crystal fibres using the directed tabu search method. Opto-Electron. Rev. 25, 1, 41-45 (2017). https://doi.org/10.1016/j.opelre.2017.04.006.
  • [37] Eliyahu, D., Sariri, K., Taylor, J. & Maleki L. Optoelectronic oscillator with improved phase noise and frequency stability. in Proc. SPIE 4998, Photonic Integrated Systems (2003).
  • [38] Pan, S., Zhou, P., Tang, Z., Zhang, Y., Zhang, F. & Zhu, D. Optoelectronic Oscillator Based on Polarization Modulation. Fiber Integrated Opt. 34, 4, 185-203 (2015). https://doi.org/10.1080/01468030.2014.967895.
  • [39] Bagnell, M., Davila-Rodriguez, J. & Delfyett, P.J. Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter. J. Lightw. Technol. 32, 6, 1063-1067 (2014). https://doi.org/10.1109/JLT.2013.2294944.
  • [40] Liu, A., Liu, J., Dai, J., Dai, Y., Yin, F., Li, J., Zhou, Y., Zhang, T. & Xu, K. Spurious suppression in millimeter-wave OEO with a high-Q optoelectronic filter. IEEE Photon. Technol. Lett. 29, 19, 1671-1674 (2017). https://doi.org/10.1109/LPT.2017.2742662.
Uwagi
1. The authors would like to express their gratitude to the company InLambda BDT d.o.o. for the research equipment and devices. The work presented in this article was carried out with the financial support of the Slovenian Research Agency (research core funding No. P2-0246) and the FiWiN5G Innovative Training Network, which has received funding from the European Union’s Horizon 2020 Research and Innovation Program 2014–2018 under the Marie Skłodowska-Curie grant agreement No. 642355.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4a3a70a-c5cc-42fb-8e44-3f57f87199c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.