Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this article is to discuss about the so-called semi-greedy bases in p-Banach spaces. Specifically, we will review existing results that characterize these bases in terms of almost-greedy bases, and, also, we analyze quantitatively the behavior of certain constants. As new results, by avoiding the use of certain classical results in p-convexity, we aim to quantitatively improve specific bounds for bi-monotone 1-semi-greedy bases.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240047
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Departamento de Métodos Cuantitativos, CUNEF Universidad, Madrid, 28040, Spain
autor
- Departamento de Métodos Cuantitativos, CUNEF Universidad, Madrid, 28040, Spain; Universidad San Pablo-CEU, CEU Universities, Madrid, 28003, Spain
autor
- Universidad San Pablo-CEU, CEU Universities, Madrid, 28003, Spain
Bibliografia
- [1] S. V. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365–379.
- [2] F. Albiac, J. L. Ansorena, P. M. Berná, and P. Wojtaszczyk, Greedy approximation for biorthogonal systems in quasi-Banach spaces,
- Dissertationes Math. 560 (2021), 1–88.
- [3] P. M. Berná, H. V. Chú, and E. Hernández, On approximation spaces and greedy-type bases, submitted (2023), https://arxiv.org/pdf/2207.02554.pdf.
- [4] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acadios. Polon. Sci. Cl. III 5 (1957), 471–473.
- [5] T. Aoki, Locally bounded linear topological spaces, English, with Russian summary, Proc. Imp. Acad, 18 (1942) no. 10, 588–594.
- [6] M. Pavlović, Function Classes on the Unit Disc, De Gruyter Studies in Mathematics, De Gruyter, Berlin, Boston, 2nd edition, 2019.
- [7] M. Berasategui and P. M. Berná, Greedy-like bases for sequences with gaps, Banach J. Math. Anal. 18 (2024), 14.
- [8] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2000), 293–314.
- [9] S. J. Dilworth, N. J. Kalton, D. Kutzarova, and V. N. Temlyakov, The Thresholding Greedy algorithm, Greedy Bases, and duality, Constr. Approx. 19 (2003), 575–597.
- [10] P. M. Berná, O. Blasco, and G. Garrigós, Lebesgue inequalities for greedy algorithm in general bases, Rev. Mat. Complut. 30 (2017), 369–392.
- [11] S. J. Dilworth and D. Mitra, A conditional quasi-greedy basis of ℓ1, Studia Math. 144 (2001), 95–100.
- [12] G. Garrigós, E. Hernández, and T. Oikhberg, Lebesgue-type inequalities for quasi-greedy bases, Constr. Approx. 38 (2013), no. 3, 447–470.
- [13] S. J. Dilworth, N. J. Kalton, and D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67–101.
- [14] P. M. Berná, Equivalence between almost-greedy and semi-greedy bases, J. Anal. Math. 470 (2019), 218–225.
- [15] M. Berasategui and S. Lassalle, Weak Greedy algorithms and the equivalence between semi-Greedy and almost Greedy Markushevich bases, J. Fourier Anal. Appl. 29 (2023), 20.
- [16] F. Albiac and P. Wojtaszscyk, Characterization of 1-greedy bases, J. Approx. Theory 201 (2006), 65–86.
- [17] M. Berasategui, P. M. Berná, and D. González, Approximation by polynomials with constant coefficients and the Thresholding Greedy Algorithm, Carpathian J. Math. 41 (2025), no. 1, 31–44.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4a0ea82-7216-4a00-8c0c-c5af5c194f61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.