PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Role of Boron-Doped Diamond and Platinum Anodes in the Three-Compartment Electrochemical Pretreatment of Stabilized Landfill Leachate – Response Surface Methodological Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stabilized landfill leachate contains high fractions of refractory organics that cannot be effectively degraded by simple biological or physicochemical treatment. Thus, primary treatment was required to improve biodegradability and enhance treatment efficiency. This study investigated the role of Boron-Doped Diamond (BDD) and platinum (Pt) anodes at a current density of 29.2 and 33.3 mA/cm2 in the electrochemical processes for the pretreatment of stabilized leachate. A three-compartment electrochemical reactor was used in the research to enhance the removal of ionic pollutants. The pollutants were measured as total dissolved solids (TDS), chemical oxygen demand (COD), ammonium-nitrogen (NH4–N), and nitrite (NO2). The reactor performance was then analyzed using a regular two-level factorial design. The results showed that the electrochemical process effectively removed organic and inorganic pollutants. The highest removal was obtained at 33.3 mA/cm2 using the BDD, measured around 48, 82, 60, and 79% for TDS, COD, NH4–N, and NO2, respectively. Meanwhile, the specific energy consumption for COD removal was estimated to reach 1.5 and 1.55 Wh/g for BDD and Pt, respectively. These results imply that the type of anodes and applied current densities significantly influence the treatment efficiency.
Rocznik
Strony
50--60
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Research Center for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Research Center for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Agustina, F., Bagastyo, A.Y., Nurhayati, E. 2019. Electro-oxidation of landfill leachate using boron-doped diamond: Role of current density, pH and ions. Water Sci. Technol. 79, 921–928. https://doi.org/10.2166/wst.2019.040
  • 2. Ahmad, T., Ahmad, K., Alam, M. 2021. Simultaneous modelling of coagulant recovery and reuse by response surface methodology. J. Environ. Manage. 285, 112139. https://doi.org/10.1016/j.jenvman.2021.112139
  • 3. American Public Health Association. 2005. Standard Methods for The Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Associations, Water Environment Federation, Washington D.C., USA.
  • 4. Anglada, A., Urtiaga, A., Ortiz, I. 2009. Pilot scale performance of the electrooxidation of landfill leachate at boron-doped diamond anodes. Environ. Sci. Technol., 43, 2035–2040.
  • 5. Anglada, Á., Urtiaga, A., Ortiz, I., Mantzavinos, D., Diamadopoulos, E. 2011. Boron-doped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products. Water Res., 45, 828–838. https://doi.org/10.1016/j.watres.2010.09.017
  • 6. Bagastyo, A.Y., Hidayati, A.S., Herumurti, W., Nurhayati, E. 2021a. Application of BDD, Ti/IrO2, and Ti/Pt anodes for the electrochemical oxidation of landfill leachate biologically pretreated by Moving Bed Biofilm Reactor. Water Sci. Technol.
  • 7. Bagastyo, A.Y., Novitasari, D., Nurhayati, E., Direstiyani, L.C. 2020. Impact of sulfate ion addition on electrochemical oxidation of anaerobically treated landfill leachate using boron-doped diamond anode. Res. Chem. Intermed., 46, 4869–4881. https://doi.org/10.1007/s11164-020-04243-3
  • 8. Bagastyo, A.Y., Sari, P.P.I., Direstiyani, L.C. 2021b. Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. Environ. Sci. Pollut. Res., 28, 63646–63660. https://doi.org/10.1007/s11356-020-11519-z
  • 9. Bagastyo, A.Y., Sidik, F., Anggrainy, A.D., Lin, J.L., Nurhayati, E. 2022. The Performance of Electrocoagulation Process in Removing Organic and Nitrogenous Compounds from Landfill Leachate in a Three-Compartment Reactor. J. Ecol. Eng., 23, 235–245. https://doi.org/10.12911/22998993/145290
  • 10. Deborde, M., von Gunten, U. 2008. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review. Water Res., 42, 13–51. https://doi.org/10.1016/j.watres.2007.07.025
  • 11. Deng, Y., Englehardt, J.D. 2007. Electrochemical oxidation for landfill leachate treatment. Waste Manag., 27, 380–388. https://doi.org/10.1016/j.wasman.2006.02.004
  • 12. Deng, Y., Zhu, X., Chen, N., Feng, C., Wang, H., Kuang, P., Hu, W. 2020. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Sci. Total Environ., 745, 140768. https://doi.org/10.1016/j.scitotenv.2020.140768
  • 13. Feki, F., Aloui, F., Feki, M., Sayadi, S. 2009. Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor. Chemosphere, 75, 256–260. https://doi.org/10.1016/j.chemosphere.2008.12.013
  • 14. Fernandes, A., Pacheco, M.J., Ciríaco, L., Lopes, A. 2015. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B Environ., 176–177, 183–200. https://doi.org/10.1016/j.apcatb.2015.03.052
  • 15. Fernandes, A., Santos, D., Pacheco, M.J., Ciríaco, L., Lopes, A. 2014. Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl. Catal. B Environ., 148–149, 288–294. https://doi.org/10.1016/j.apcatb.2013.10.060
  • 16. Gómez, M., Corona, F., Hidalgo, M.D. 2019. Variations in the properties of leachate according to landfill age. Desalin. Water Treat., 159, 24–31. https://doi.org/10.5004/dwt.2019.24106
  • 17. Hu, X., Wang, H., Liu, Y. 2016. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen-Doped Magnetic Graphene Oxide. Sci. Rep., 6. https://doi.org/10.1038/srep34378
  • 18. Hussein, M., Yoneda, K., Zaki, Z.M., Othman, N.A., Amir, A. 2019. Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environ. Nanotechnology, Monit. Manag., 12, 100232. https://doi.org/10.1016/j.enmm.2019.100232
  • 19. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H. 2002. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol., 32, 37–41. https://doi.org/10.1080/10643380290813462
  • 20. Lessoued, R., Souahi, F., Pelaez, L.C. 2017. Assessment of coagulation pretreatment of leachate by response surface methodology. Water Sci. Technol., 76, 2321–2327. https://doi.org/10.2166/wst.2017.397
  • 21. Mandal, P., Dubey, B.K., Gupta, A.K. 2017. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope. Waste Manag., 69, 250–273. https://doi.org/10.1016/j.wasman.2017.08.034
  • 22. Montgomery, D.C. 2013. Montgomery Design and Analysis of Experiments Eighth Edition. Arizona State University, 8th ed. John Wiley & Sons, Inc., USA.
  • 23. Mukherjee, S., Mukhopadhyay, S., Hashim, M.A., Gupta, B. Sen. 2015. Contemporary environmental issues of landfill leachate: Assessment and remedies. Crit. Rev. Environ. Sci. Technol. 45, 472–590. https://doi.org/10.1080/10643389.2013.876524
  • 24. Oturan, N., Van Hullebusch, E.D., Zhang, H., Mazeas, L., Budzinski, H., Le Menach, K., Oturan, M.A. 2015. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. Environ. Sci. Technol., 49, 12187–12196. https://doi.org/10.1021/acs.est.5b02809
  • 25. Panizza, M., Cerisola, G. 2009. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev., 109, 6541–6569. https://doi.org/10.1021/cr9001319
  • 26. Panizza, M., Martinez-Huitle, C.A. 2013. Role of electrode materials for the anodic oxidation of a real landfill leachate - Comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere, 90, 1455–1460. https://doi.org/10.1016/j.chemosphere.2012.09.006
  • 27. Patel, P.S., Bandre, N., Saraf, A., Ruparelia, J.P. 2013. Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Procedia Eng., 51, 430–435. https://doi.org/10.1016/j.proeng.2013.01.060
  • 28. Ukundimana, Z., Omwene, P.I., Gengec, E., Can, O.T., Kobya, M. 2018. Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types. Electrochim. Acta, 286, 252–263. https://doi.org/10.1016/j.electacta.2018.08.019
  • 29. Veli, S., Arslan, A., Isgoren, M., Bingol, D., Demiral, D. 2021. Experimental design approach to COD and color removal of landfill leachate by the electro-oxidation process. Environ. Challenges, 5, 100369. https://doi.org/10.1016/j.envc.2021.100369
  • 30. Zambrano, J., Min, B. 2020. Electrochemical treatment of leachate containing highly concentrated phenol and ammonia using a Pt/Ti anode at different current densities. Environ. Technol. Innov., 18, 100632. https://doi.org/10.1016/j.eti.2020.100632
  • 31. Zhao, G., Pang, Y., Liu, L., Gao, J., Lv, B. 2010. Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidition on a boron-doped diamond electrode. J. Hazard. Mater., 179, 1078–1083. https://doi.org/10.1016/j.jhazmat.2010.03.115
  • 32. Zhou, B., Yu, Z., Wei, Q., Long, H.Y., Xie, Y., Wang, Y. 2016. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Appl. Surf. Sci., 377, 406–415. https://doi.org/10.1016/j.apsusc.2016.03.045
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f49be7e0-3e8a-4e56-8601-1d3a2b6583b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.