Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents novel boundary element technique for analysis of anisotropic thermomagnetoelectroelastic solids containing cracks and thin shell-like soft inclusions. Dual boundary integral equations of heat conduction and thermomagnetoelectroelasticity are derived, which do not contain volume integrals in the absence of distributed body heat and extended body forces. Models of 3D soft thermomagnetoelectroelastic thin inclusions are adopted. The issues on the boundary element solution of obtained equations are discussed. The efficient techniques for numerical evaluation of kernels and singular and hypersingular integrals are discussed. Nonlinear polynomial mappings are adopted for smoothing the integrand at the inclusion’s front, which is advantageous for accurate evaluation of field intensity factors. Special shape functions are introduced, which account for a square-root singularity of extended stress and heat flux at the inclusion’s front. Numerical example is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
308--312
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
- Department of Computer Engineering, Lutsk National Technical University, Lvivska Str 75, 43018 Lutsk, Ukraine
autor
- Department of Mechanics and Applied Computer Science, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
- 1. Aliabadi M.H. (1997) Boundary element formulations in fracture mechanics, Applied Mechanics Review, 50, 83–96.
- 2. Dunn M.L. (1993) Micromechanics of coupled electroelastic composites: effective thermal expansion and pyroelectric coefficients, J Appl Phys, 73, 5131–5140.
- 3. Muñoz-Reja M.M., Buroni F.C., Sáez A., García-Sánchez F. (2016) 3D explicit-BEM fracture analysis for materials with anisotropic multifield coupling, Applied Mathematical Modelling, 40, 2897–2912.
- 4. Mykhas’kiv V.V., Khay O.M., Zhang Ch., Bostrom A. (2010) Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions, Waves in Random and Complex Media, 20(3), 491–510.
- 5. Pan E., Yuan F.G. (2000) Boundary element analysis of threedimensional cracks in anisotropic solids, Int. J. Numer. Meth. Engng., 48, 211–237.
- 6. Pasternak Ia., Pasternak R., Pasternak V., Sulym H. (2017) Boundary element analysis of 3D cracks in anisotropic thermomagnetoelectroelastic solids, Engineering Analysis with Boundary Elements, 74, 70–78.
- 7. Pasternak Ia., Pasternak R., Sulym H. (2014) Temperature field and heat flux that do not induce stress and electric displacement in a free thermoelectroelastic anisotropic solid, Mechanics Research Communications, 57, 40–43.
- 8. Rungamornrat J., Phongtinnaboot W., Wijeyewickrema A.C. (2015) Analysis of cracks in 3D piezoelectric media with various electrical boundary conditions, International Journal of Fracture, 192, 133–153.
- 9. Selvadurai A.P.S. (2000) An inclusion at a bi-material elastic interface, Journal of Engineering Mathematics, 37, 155–170.
- 10. Selvadurai A.P.S. (2002) Mechanics of a rigid circular disc bonded to a cracked elastic half-space, Int. J. of Solids and Structures, 39, 6035–6053.
- 11. Sulym H.T. (2007) Bases of mathematical theory of thermoelastic equilibrium of deformable solids with thin inclusions, Research and Publishing center of NTSh, Lviv, (in Ukrainian).
Uwagi
1. The present paper is financially supported by the Ministry of Science and Higher Education of Poland (research project No S/WM/4/2017) and realized in Bialystok University of Technology.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4965aa9-a194-40b4-b69e-5e0a62f36b4e