PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simulation study of temperature effects on performance parameters of silicon heterojunction solar cells with different ITO/a-Si:H selective contacts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of temperature variation on the performance of silicon heterojunction solar cells are studied using opto-electrical simulations. It is shown that the low-temperature cell efficiency is determined by the fill factor, while at high temperatures it depends on the open-circuit voltage. Simulations revealed that the low-temperature drop in the fill factor is caused by poor tunnelling, in particular at the ITO/p-a-Si:H heterojunction. The authors link this drop in fill factor to a low maximum-power-point voltage and show how poor tunnelling is reflected in the charge redistribution determining the device voltage. The effect of the contact work function on temperature behaviour of efficiency by varying the electron affinity of ITO layers has been demonstrated. It was also demonstrated that increasing the electron affinity of ITO on the p-side minimises the work function mismatch, leading to significant improvements in efficiency, especially at low temperatures, while optimisation on the n-side results in maginal improvements over the entire temperature range. In addition to the cumulative effects of the temperature-dependent parameters, their individual contributions to the efficiency were also investigated. Moreover, it was presented that the thermal energy (kT) determines the efficiency temperature behaviour, while other parameters play only a minor role. This paper shows how temperature variations affect device performance parameters.
Słowa kluczowe
Rocznik
Strony
art. no. e140557
Opis fizyczny
Bibliogr. 48 poz., rys., wykr., tab.
Twórcy
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
Bibliografia
  • [1] Green, M. et al. Solar cell efficiency tables (version 57). Prog. Photovolt. 29, 3–15 (2021). https://doi.org/10.1002/pip.3371
  • [2] Langner, A. Photovoltaics Report. ise.frauenhofer https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf. (2021). (Accessed: 8th Nov. 2021).
  • [3] Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016). https://doi.org/10.1039/C5EE03380B
  • [4] Feldmann, F., Reichel, M. B. C., Hermle, M. & Glunz, S. W. A Passivated Rear Contact for High-Efficiency n-Type Silicon Solar Cells Enabling High Vocs and FF>82 %. in 28th European Photovoltaic Solar Energy Conference and Exhibition 988–992 (2013). https://doi.org/10.4229/28thEUPVSEC2013-2CO.4.4
  • [5] Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering. (John Wiley & Sons, Ltd., 2011).
  • [6] Yamaguchi, M., Dimroth, F., Geisz, J. F. & Ekins-Daukes, N. J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 129, 240901 (2021). https://doi.org/10.1063/5.0048653
  • [7] Best Research-Cell Efficiency Chart. National Renewable Energy Laboratory https://www.nrel.gov/pv/cell-efficiency.html (Accessed: 27th Dec. 2021).
  • [8] Yoshikawa, K. et al. Silicon heterojunction solar cell with inter-digitated back contacts for a photoconversion efficiency over 26 %. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32
  • [9] Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
  • [10] Jaeckel, B. et al. Combined Standard for PV Module Design Qualification and Type Approval: New IEC 61215 - Series. in 29th European PV Solar Energy Conference and Exhibition (EU PVSEC 2014) (2014).
  • [11] Cattin, J. et al. Optimized design of silicon heterojunction solar cells for field operating conditions. IEEE J. Photovolt. 9, 1541–1547 (2019). https://doi.org/10.1109/JPHOTOV.2019.2938449
  • [12] Synopsys. SentaurusTM Device User Guide Q-2020.09-SP1. (2020).
  • [13] Cotfas, D. T., Cotfas, P. A. & Machidon, O. M. Study of temperature coefficients for parameters of photovoltaic cells. Int. J. Photoenergy 2018, 5945602 (2018). https://doi.org/10.1155/2018/5945602
  • [14] Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices: Physics and Engineering. (Springer, 2016).
  • [15] Balent, J., Smole, F., Topic, M. & Krc, J. Numerical analysis of selective ito/a-si:h contacts in heterojunction silicon solar cells: effect of defect states in doped a-si:h layers on performance parameters. IEEE J. Photovolt. 11, 634–647 (2021). https://doi.org/10.1109/JPHOTOV.2021.3063019
  • [16] Mikolášek, M., Racko, J. & Harmatha, L. Analysis of low temperature output parameters for investigation of silicon heterojunction solar cells. Appl. Surf. Sci. 395, 166–171 (2017). https://doi.org/10.1016/j.apsusc.2016.04.023
  • [17] Ganji, J. Numerical simulation of thermal behavior and optimization of a-Si/a-Si/C-Si/a-Si/A-Si hit solar cell at high temperatures. Electr. Eng. Electromech. 6, 47–52 (2017). https://doi.org/10.20998/2074-272X.2017.6.07
  • [18] Martini, L., Serenelli, L., Menchini, F., Izzi, M. & Tucci, M. Silicon heterojunction solar cells toward higher fill factor. Prog. Photovolt. 28, 307–320 (2020). https://doi.org/10.1002/pip.3241
  • [19] Heidarzadeh, H. Performance analysis of an HJ-IBC silicon solar cell in ultra-high temperatures: possibility of lower reduction efficiency rate. Silicon 12, 1369–1377 (2020). https://doi.org/10.1007/s12633-019-00230-5
  • [20] Abdallah, A. et al. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment. Energy Procedia 124, 331–337 (2017). https://doi.org/10.1016/j.egypro.2017.09.307
  • [21] Krč, J., Smole, F. & Topic, M. One-dimensional semi-coherent optical model for thin film solar cells with rough interfaces. Inform. MIDEM 32, 6–13 (2002). http://www.midem-drustvo.si/Journal %20papers/MIDEM_32(2002)1p6.pdf
  • [22] Lokar, Z. et al. Coupled modelling approach for optimization of bifacial silicon heterojunction solar cells with multi-scale interface textures. Opt. Express 27, A1554–A1568 (2019). https://doi.org/10.1364/OE.27.0A1554
  • [23] Holman, Z. C. et al. . Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012). https://doi.org/10.1109/JPHOTOV.2011.2174967
  • [24] Holman, Z. C. et al.. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 113, 013107 (2013). https://doi.org/10.1063/1.4772975
  • [25] Palik, E. D. Handbook of Optical Constants of Solids. (Academic Press, Elsevier, 1997).
  • [26] Kanevce, A. & Metzger, W. K. The role of amorphous silicon and tunnelling in heterojunction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105, 094507 (2009). https://doi.org/10.1063/1.3106642
  • [27] Procel, P. Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell. Prog. Photovolt. 25, 452–469 (2017). https://doi.org/10.1002/pip.2874
  • [28] Procel, P., Yang, G., Isabella, O. & Zeman, M. Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells. Sol. Energy Mater. Sol. Cells 186, 66–77 (2018). https://doi.org/10.1016/j.solmat.2018.06.021
  • [29] Shu, Z., Das, U., Allen, J., Birkmire, R. & Hegedus, S. Experimental and simulated analysis of front versus all-back-contact silicon heterojunction solar cells: effect of interface and doped a-Si:H layer defects. Prog. Photovolt. 23, 78–93 (2015). https://doi.org/10.1002/pip.2400
  • [30] Richter, A., Glunz, S. W., Werner, F., Schmidt, J. & Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012). https://doi.org/10.1103/PhysRevB.86.165202
  • [31] Filipic, M., Smole, F. & Topic, M. Optimization of Interdigitated Back Contact Geometry in Silicon Heterojunction Solar Cell. in 14th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 14) 161–162 (2014). https://doi.org/10.1109/NUSOD.2014.6935406
  • [32] Lombardi, C., Manzini, S., Saporito, A. & Vanzi, M. A physically based mobility model for numerical simulation of nonplanar devices. IEEE T. Comput. Aid. D. 7, 1164–1171 (1988). https://doi.org/10.1109/43.9186
  • [33] Bludau, W., Onton, A. & Heinke, W. Temperature dependence of the band gap of silicon. J. Appl. Phys. 45, 1846–1848 (1974). https://doi.org/10.1063/1.1663501
  • [34] Riesen, Y., Stuckelberger, M., Haug, F.-J., Ballif, C. & Wyrsch, N. Temperature dependence of hydrogenated amorphous silicon solar cell performances. J. Appl. Phys. 119, 044505 (2016). https://doi.org/10.1063/1.4940392
  • [35] Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8
  • [36] Zanatta, A. R. Revisiting the optical band gap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 9, 11225 (2019). https://doi.org/10.1038/s41598-019-47670-y
  • [37] Taguchi, M., Maruyama, E. & Tanaka, M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 47, 814–818 (2008). https://doi.org/10.1143/JJAP.47.814
  • [38] Cattin, J. Influence of the Thicknesses of The Amorphous Silicon Layers on The Efficiency of Silicon Heterojunction Solar Cells for Various Climates. in 27th International Photovoltaic Science and Engineering Conference (PVSEC-27) (2017). https://pvsec-27.com/wp-content/themes/pvsec27/abstract/pages/abst/10389.pdf
  • [39] Cattin, J. Characterisation of Silicon Heterojunction Solar Cells Beyond Standard Test Conditions. (École polytechnique fédérale de Lausanne, 2020).
  • [40] Klein, A. et al. transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials 3, 4892–4914 (2010). https://doi.org/10.3390/ma3114892
  • [41] Bivour, M., Schröer, S. & Hermle, M. Numerical analysis of electrical TCO / a-Si:H(p) contact properties for silicon heterojunction solar cells. Energy Procedia 38, 658–669 (2013). https://doi.org/10.1016/j.egypro.2013.07.330
  • [42] Bivour, M. Silicon heterojunction solar cells: Analysis and basic understanding. (Fraunhofer Verlag, Freiburg, 2017).
  • [43] Sachenko, A. V. et al. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells. Tech. Phys. Lett. 42, 313–316 (2016). https://doi.org/10.1134/S1063785016030305
  • [44] Saive, R. S-shaped current–voltage characteristics in solar cells: A Review. IEEE J. Photovolt. 9, 1477–1484 (2019). https://doi.org/10.1109/JPHOTOV.2019.2930409
  • [45] Palma, A., Godoy, A., Jiménez-Tejada, J. A., Carceller, J. E. & López-Villanueva, J. A. Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures. Phys. Rev. B 56, 9565–9574 (1997). https://doi.org/10.1103/PhysRevB.56.9565
  • [46] Jiménez-Molinos, F., Gámiz, F., Palma, A., Cartujo, P. & López-Villanueva, J. A. Direct and trap-assisted elastic tunneling through ultrathin gate oxides. J. Appl. Phys. 91, 5116–5124 (2002). https://doi.org/10.1063/1.1461062
  • [47] Procel, P. et al.The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells. Prog. Photovolt. 28, 935–945 (2020). https://doi.org/10.1002/pip.3300
  • [48] Lin, L. & Ravindra, N. M. Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Appl. Sci. 2, 1361 (2020). https://doi.org/10.1007/s42452-020-3169-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4904c2d-dbfb-4b88-bb19-897d95e9461a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.