PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanistic study on the flotation of barite with C18H33NaO2 under microwave radiation based on UV-visible spectrophotometric analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the pure mineral flotation tests of barite, this study investigated the effect law of microwave on barite flotation by using a UV-visible spectrophotometer (L5), solution chemistry calculation, and zeta potential, scanning electron microscope (SEM), and other testing methods. Additionally, red flotation kinetic analysis was carried out to deeply explore the mechanism of C18H33NaO2 flotation of barite under microwave radiation. Mineral flotation tests showed that after microwave treatment, the flotation recovery of barite and deionized water increased by 2.67% and 3.35%, respectively, while that of the microwave action pulp and chemically added pulp decreased by 2.90% and 8.51%, respectively. Microwave action on barite can improve its flotation recovery (up to 95.27%). The action of microwave heating can improve the positive electrical properties of the surface of barite, and accordingly, its specific surface area would be enlarged. In this case, the adsorption rate of sodium oleate on the surface of barite increased, thereby improving the flotation recovery. The flotation kinetics analysis revealed that the k-value of the primary kinetic model was the most informative among the four models of flotation kinetics, and its fitting results can truly reflect the flotation results of barite before and after the microwave action. Through the analysis of barite flotation adsorption experiment under microwave action and with sodium oleate as a collector, this study revealed the mechanism of C1818H33NaO2 on barite flotation under a microwave roaster. This study provides an important reference for the research on efficient barite flotation.
Rocznik
Strony
art. no. 156349
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • China University of Mining and Technology (Beijing), China
  • Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
  • Jin Neng Holding Coal Group, Datong 037300, China
autor
  • Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
autor
  • Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
Bibliografia
  • BRIJLESH, K.N., KHUSHBOO, K., SADHAN, B, DEB, MANOJ, K.S., 2018. Bhupendra Singh Tomar. Microwave-assisted dissolution of highly refractory dysprosium-titanate (Dy2TiO5) followed by chemical characterization for major and trace elements using ICP-MS, UV-visible spectroscopy and conventional methods. Radiochimica Acta, 106(11).
  • CEN, P., BIAN, X., LIU, Z.N., GU, M.Y., WU, W.Y., LI, B.K., 2021. Extraction of rare earths from bastnaesite concentrates: A critical review and perspective for the future. Minerals Engineering, 171.
  • CHAU, T., BRUCKARD, W., KOH, P, NGUYEN, A., 2009. A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science. 150(2), 106-115.
  • CRISTINA, R.A., CHRISTINE, V.P., ENCARNACIÓN, R.A., ANDREW, P., 2015. The influence of pH on barite nucleation and growth. Chemical Geology, 391.
  • DENG, J., LIU, C., YANG, S.Y., LI, H.Q., LIU, Y., 2019. Flotation separation of barite from calcite using acidified water glass as the depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579.
  • DUAN, H., LIU, W.G., WANG, X.Y,. GU, X.W., SUN, W.H., PENG, X., Y., YUE, H., 2021. Investigation on flotation separation of bastnaesite from calcite and barite with a novel surfactant: Octylamino-bis-(butanohydroxamic acid). Separation and Purification Technology, 117792, 256.
  • FAN, X., KELLY, R.K., ROWSON, N., 2000. Effect of microwave radiation on ilmenite flotation. Canadian Metallurgical Quarterly. 39(3):247-254
  • GURPINAR, G., SONMEZ, E., BOZKURT, V., 2004. Effect of ultrasonic treatment on flotation of calcite, barite and quartz. Mineral Processing and Extractive Metallurgy, 113(2).
  • HARUO, S., YOSHIO, T., 2014. The crystal structure of barite, β-BaS04, at high temperatures. Zeitschrift für Kristallographie - Crystalline Materials, 191, 1-4.
  • JIANG, H.Y., ZHANG, F.F., CHEN, Z.J., ZHANG, H., QI, Y.C., 2022. Effect of acidified sodium silicate on flotation separation behavior of barite and dolomite. Comprehensive Utilization of Mineral Resources, 2:121-126.
  • KASIA, P., SHRUTI, S., KASIA, P., SHRUTI, S., 2016. Price analysis: Graphite and barite. Industrial Minerals. LIU, C., WANG, Q.Q., YANG, S.Y., 2021. Effects of barite size on the fluorite flotation using the reagent scheme of GS/NaOl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626.
  • LU, Y., LIU, W.P., WANG, X.M., CHENG, H.G., CHENG, F.Q., JAN, M., 2020. Lauryl phosphate flotation chemistry In barite flotation. Minerals, 10(3).
  • MICHELE, E.M., 2020. BARITE. Mining Engineering, 72(7).
  • NANTAWAT, D., LEK, S., 2016. Manoon Masniyom. Influence of air flow rate and immersion depth of designed flotation cell on barite beneficiation. Materials Science Forum, 4310, 867-867.
  • NURIA, S.P., MELANIE, K., SABINO, V.V., GUNTRAM, J., 2015. On the effect of carbonate on barite growth at elevated temperatures. American Mineralogist, 98(7).
  • OBAIDI, S.A, AKYILDIRIM, H., GUNOGLU, K., AKKURT, I., 2020. Neutron shielding calculation for barite-boron-water. Acta Physica Polonica A, 137(4).
  • OGWUEGBU, M., ACHUSIM, U., ONYEDIKA, A.C., AYUK, A., 2011. Flotation recovery of barite from ore using palm bunch based collector. International Journal of Chemical Sciences. 9(3).
  • OZKAN, S.G., BAKTARHAN, B., GUNGOREN, C., DEMIR, I., 2020. Effect of conventional and microwave thermal treatments on floatability of low- and high-rank lignites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42, 2357-2369.
  • SADIK, A.Y., 2017. Effects of barite sand addition on glass fiber reinforced concrete mechanical behavior. International Journal Of Engineering & Applied Sciences, 9(4).
  • SATHTHASIVAM, J., LOGANATHAN, K., SARP, S., 2016. An overview of oil-water separation using gas flotation systems. Chemosphere.114. 671-680.
  • XIONG, W.L., DENG, J., ZHAO, K.L., WANG, W.Q., WANG, Y.H., WEI, D.Z., 2020. Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector. Minerals, 10(3), 282-282.
  • WANG, Y., 2019. Study on the flotation behavior of calcium- and silica-bearing minerals in barite and barite ore. Guizhou University, China.
  • WANG, R.L., SUN, W.J., HAN, H.S., SUN, W., LU, Q.Q., WEI, Z., 2021. Fluorite particles as a novel barite depressant in terms of surface transformation. Minerals Engineering, 106877,166.
  • WU, J.X., LI, J., LIN, J.W., Y, S.W., LI, M., SU, W.R., 2021. Analysis of the influence mechanism of microwave on barite flotation by infrared fitting spectroscop]. Spectroscopy and Spectral Analysis, 41(10):3083-3091.
  • WU, J.X., LI, J., LIN, J.W., YI, S.W., LI, M., SU, W.R., 2021. Influence mechanism of microwave on barite flotation based on infrared fitting spectrum analysis. Spectroscopy and Spectral Analysis.41(10), 3083-3091.
  • YU, X., 2015. Study on the effect of pretreatment on the flotation behavior of wolfram and calcium-bearing veinstone minerals. Jiangxi University of Technology, China.
  • ZHAO, Y., LIU, S.Q., LI, X.J., LI, T.T., HOU, K., 2014. Recovery of low grade barite ore by flotation in the southwest area of China. Applied Mechanics and Materials, 3082, 543-547.
  • ZHOU, L., TERRENCE, M., MO, B., WANG, L., ZHANG, S., WANG, C.Y., 2020. Raman study of barite and celestine at various temperatures. Minerals,10(3).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4902608-91de-49fe-9fdf-68eafe584038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.