PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the analytical forms of fractional order derivatives of sinusoidal function according to definitions of Riemann - Liouville and Caputo are presented. To determine the analytical form of the integrals appearing in definitions of derivatives of fractional order the Lommel functions from hypergeometrical functions family were applied. With the use of properties of the derivatives of fractional order - differential-integral there were presented the conception of generalized element of a single equation, which depending on the value of the derivative order, can be inductor, resistor, capacitor, or a hypothetical element of a fractional order differential equation.
Rocznik
Strony
243--248
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
  • Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] R.L. Bagley, “Fractional calculus - a different approach to the analysis of viscoelastically damped structures”, AIAA J. 21, 741-748 (1983).
  • [2] M.E. Reyes-Melo, J.J. Martinez-Vega, C.A. Guerrero-Salazar, and U. Ortiz-Mendes, “Modelling of relaxation phenomena in organic dielectric materials, application of differential and integral operators of fractional order”, J. Optoelectronics and Advanced Matrials 6 (3), 1037-1043 (2004).
  • [3] T. Kaczorek, Positive ID and 2D Systems, Springer Verlag, London, 2002.
  • [4] D. Sierociuk, “Estimation and control of discrete dynamical systems of fractional order described in a state space”, Doctoral Dissertation, Warsaw University of Technology, Warsaw, 2007, (in Polish).
  • [5] A. Ruszewski, “Stability regions of closed loop system with time delay inertial plant of fractional order and fractional order PI controller”, Bull. Pol. Ac.: Tech. 56 (4), 329-332 (2008).
  • [6] T. Kosztołowicz, The Use of Differential Equations with Fractional Derivatives to Describe a Subdiffusion, Jan Kochanowski University in Kielce, Kielce, 2008, (in Polish).
  • [7] V. Zaborovsky and R. Meylanov, “Informational network traffic model based on fractional calculus”, Proc. Int. Conf. Info-tech and Info-net 1, CD-ROM (2001).
  • [8] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58 (4), 583-592 (2010).
  • [9] M. Włodarczyk and A. Zawadzki, “Connecting a capacitor to direct voltage in aspect of fractional degree derivatives”, Przegląd Elektrotechniczny 10, 120-123 (2009).
  • [10] A. Zawadzki, “Applying derivatives of the fractional order for modeling transient states in electrical circuits containing inductance”, Przegląd Elektrotechniczny 4, 92-94 (2013), (in Polish).
  • [11] M. Włodarczyk and A. Zawadzki, “Algorithms of calculations of fractional derivatives of unit function”, in: Information Technology in Science, Technology and Education, pp. 87-90, Scientific Publishing House of Institute for Sustainable Technologies-National Research Institute, Radom 2009, (in Polish).
  • [12] D. Brzeziński and P. Ostalczyk, “Numerical evaluation of fractional differ-integrals of some periodical functions via the IMT transformation”, Bull. Pol. Ac.: Tech. 60 (2), 285-292 (2012).
  • [13] A. Zawadzki and M. Włodarczyk, “The numerical calculations of fractional order derivatives for sinusoidal functions”, in: Science, Technology, Education and Modern Information Technology, pp. 194-205, Scientific Publishing House of Institute for Sustainable Technologies-National Research Institute, Radom 2011, (in Polish).
  • [14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [15] P. Ostalczyk, The Outline of Differential and Integral Calculus of Fractional Order. The Theory and Applications in Automatic Control, Publishing Department of Technical University of Łodź, Łodź, 2008, (in Polish).
  • [16] T. Kaczorek, “Fractional positive linear system and electrical circuits”, Przegląd Elektrotechniczny 9, 135-141 (2008).
  • [17] D.W. Brzeziński and P. Ostalczyk, “High-accuracy numerical integration methods for fractional order derivatives and integrals computations”, Bull. Pol. Ac.: Tech. 62 (4), 723-733 (2014).
  • [18] S. Paszkowski, Numerical Applications of Chebyshev Polynomials and Series, PWN, Warszawa, 1975, (in Polish).
  • [19] N.W. McLachlan, Bessel Functions for Engineers, Clarendon Press, Oxford, 1955.
  • [20] M. Caputo, Elasticil `a c Dissipazione, Zanichelli, Bologna, 1969.
  • [21] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [22] T. Kaczorek., Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin-Heidelberg, 2011.
  • [23] T. Kaczorek, “Analysis of fractional linear electrical circuits in transient states”, Przegląd Elektrotechniczny 6, 191-195 (2010), (in Polish).
  • [24] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, Bull. Pol. Ac.: Tech. 60 (2), 279-284 (2012).
  • [25] T. Kaczorek, “Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear system”, Bull. Pol. Ac.: Tech. 62 (4), 889-895 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f48cd92b-f029-460c-8959-bc89b465c415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.