PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Niedokładność porównania kinetyki pierwszego rzędu w modelowaniu usuwania związków azotu w oczyszczalniach hydrofitowych

Identyfikatory
Warianty tytułu
EN
Inadequacy of the first-order kinetic model for removal of nitrogen compounds in treatment wetland system
Języki publikacji
PL
Abstrakty
EN
Textbook describe nitrification and denitrification process in a simplified way. The nitrification process begins with ammonia nitrogen (NH4) oxidation to nitrites (NO2) followed by oxidation to nitrates (NO3) by Nitrosomonas and Nitrobacter (or Nitrospira) bacteria, respectively. Hydroxylamine (NH2OH) is an important intermediate product between ammonia and nitrite. Next – or afterward – facultative anaerobic bacteria denitrify by oxidizing organic carbon with nitrate or nitrite. This “model” (in terms of precess) has been successfully applied for conventional wastewater technology and design. However, recent developments in technology of wastewater engineering reveal that that “the classic model” of nitrification and denitrification is specific to the treatment technologies that use it, and thus cannot be consider as a general model for treatment wetlands. This paper present weaknesses of first-order kinetics applied to nitrogen removal processes in treatment wetland system. It points out that reaction constants (k and C*) are strongly dependant on several factors, e.g. hydraulic behavior of wetland system or nitrogen fractions present in untreated wastewater. Precision on first-order model provides only information on general conditions found in filter bed (e.g. effluent COD and TN concentration, but its inaccuracy eliminates possibility of predicting effluent concentration of organic nitrogen (N-Org), total suspended solid (TSS), and BOD5. Background concentration C*place an important role here, however its values in literature are found in a wide range. A distinction was made between true and apparent background concentration. Some of the cases show that these two concentrations are equal, however it is still difficult to use one value of C* in modeling process.
Rocznik
Strony
71--81
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Katedra Technologii Wody i Ścieków, Wydział Inżynierii Lądowej i Środowiska, Politechnika Gdańska
Bibliografia
  • [1] Brix H.: Use of constructed wetlands in water pollution control: Historical development, present status, and future perspectives. Water Science and Technology. 30(8), 1994, s. 209-223.
  • [2] Brix H., Johansen N.H.: Guidelines for Vertical Flow Constructed Wetland System up to 30PE. Okologisk Byfornyelse og Spildevandsrensning No. 52. Copenhagen, Denmark: Miljosiyrelsen, Miljoministcriet 2004.
  • [3] Dong Z. & Sun T.: A potential new process for improving nitrogen removal in constructed wetlands - Promoting coexistence of partial - nitrification and ANAMMOX. Ecological Engineering, 31(2), 2007, s. 69-78.
  • [4] Gajewska M., Ambroch K.: Pathways of nitrogen removal in hybrid treatment wetlands. Polish Journal of Environmental Studies Vol. 21, No 1 (2012), 2012, s. 65-74.
  • [5] Galloway J, Dentetner F. Capone D., Boyer E., Howarth R., Seitzinger S., Asner G., Cleveland C., Green P., Holland E., Karl D., Michaels A., Porter J., Townsend A., Vörösmarty C.: Nitrogen cycles: past, present and future. Biogeochemistry, 70(2), 2004, s. 153-226.
  • [6] Henze M., Gujer W., Mino T., van Loosdrecht M.: Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, Alliance House, 12 Caxton Street. London SW1H 0QS, UK 2000.
  • [7] Jetten M., Cirpus I., Kartal B., van Nifrik L., van de Pas-Schoonen K., Sliekers O., van der Star W., Schmid M., van de Vossenberg J., Schmidt I., Harhangi H., van Loosdrecht M., Gijs Kuenen J., Op den Camp H., & Straus M.: 1994-2004: 10 years of research on the anaerobic oxidation of ammonium. Biochemical Society Transactions, 33(Pt 1), 2005. s. 119 123.
  • [8] Kadlec ., Knight R.L.: Treatment Wetlands. CRC Press, Boca Raton, Florida, USA 1996
  • [9] Kadlec R.: Inadequacy of first-order treatment wetland models. Ecological Engineering, 15, 2000, s. 105-119
  • [10] Kadlec R., Effects of pollutant specification in treatment wetlands design. Ecological Engineering, 20(1). 2003, s. 1-16
  • [11] Kadlec R., Wallace S.: Treatment Wetlands (2nd ed.). Boca Raton. FL: CRC Press 2008.
  • [12] Langergraber G., Rousseau D.P.L., Garcia J., Mena J.: CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Science and Technology, 59(9), 2009a.
  • [13] Langergraber G., Giraldi D., Mena J., Meyer P., Pena M., Toscano A., Brovelli A., Korkusuz E.A.: Recent developments in numerical modelling of subsurface flow constructed wetlands. Science of the Total Environment, 407, 2009b, s. 3931-3943.
  • [14] Maciolek D., Austin D.: Low energy biological nitrogen removal by cation exchange, thin film oxygen transfer, and heterotrophic nitrification in sequencing-hatch packed-bed reactors. Paper presented at the Water Environment Federation Technical Conference, Dallas 2006.
  • [15] Monod J.: The growth of bacterial cultures. Annual Rev. Microbiology 3, 1949, s. 371-394.
  • [16] Obarska-Pempkowiak H., Gajewska M., Wojciechowska E.: Hydrofilowe oczyszczanie wód i ścieków. Warszawa: Wyd. Naukowe PWN 2010.
  • [17] Robertson L., Kuenen J.: Combined heterotrophic nitrification and aerobic denitrification in in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek, 57(3), 1990, s. 139-152.
  • [18] Rousseau D.P.L., Vanrolleghem P.A., De Pauw N.: Model - based design of horizontal subsurface flow constructed treatment wetlands a review. Water Resources, 38(6), 2004, s. 1484-93.
  • [19] Saeed, T., Sun, G.: The removal of nitrogen and organics in vertical flow wetland reactors: predictive models. Bioresource Technology 102(2), 2011, s. 1205-1213.
  • [20] Schmidt I., Sliekers O., Schmid M., Cirpus I., Strous M., Bock E., Kuenen J., Jetten M.: Aerobic and anaerobic ammonia-oxidizing bacteria - competitors or natural partners? FEMS Microbiology Ecology, 39(3), 2002, s. 175-181.
  • [21] Stein O.R., Towler B.W., Hook P.B., Bicderman J.A.: On fitting the k-C* first order model to batch loaded sub-surface treatment wetlands. Water Science and Technology, 56(3), 2007, s. 93-99.
  • [22] Shepherd H.L.: Tchobanogolous G., Grismer M.E.: Time-dependant retardation model for chemical oxygen demand removal in a subsurface-flow constructed wetland for winery wastewater treatment. Water Environ Res 73(5), 2001, s. 597-606.
  • [23] Sun G., Austin D.: Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere 68, 2007, s. 1120-1128.
  • [24] Thobanoglous G., Burton F.L, Stensel H.D.: Wastewater engineering, treatment and reuse (4thed.). New York: McGraw Hill 2003.
  • [25] van Loosdrecht M. & Jetten M.: Microbiological conversions in nitrogen removal. Water Science and Technology, 38(1), 1998, s. 1-7.
  • [26] Wallace S., Knight R.: Small-scale constructed wetland wastewater treatment systems: Feasibility, design and O&M requirements (Project 01-CTS-5). Alexandria, VA: Water Environment Research Foundation 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f48a3653-80c3-4680-871b-5977dc703ce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.