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Abstract

Bootstrap and resampling methods are the comma#rods used in applied statistics. They are tgpése
Monte Carlo method based on the observed datald3r&dron described the bootstrap method in 19%P an
he has written a lot about it and its generalizegisince then. Here we apply these methods in girieal
Bayes estimation using bootstrap copies of thearedsdata to obtain an empirical prior distribution

1. Introduction variables X, X,,...,.X,, are mutually independent

The bootstrap is a data-based method of simulatio@nd identically distributed (i.i.d.). That random
for assessing statistical accuracy. The term bemst Vvector is a sample from the distributid, 0.(A
derives from the phrase pull oneself up by one’s vector y, =(y;,Y,,....Y, Jof the testing times of
bootstrap’ which can be found in the eighteenth glements (times of the observations, censoring

century Adventures of Baron Munchausen bypoints) we can treat as the value of the random
Rudolf Erich Raspe. Efron proposed the method.gcior v =(Y,Y,...Y,). We assume that
. Yy, ).

The main goal of the bootstrap method is aYl,Yg,---,Y

computer-based fulfilling of basic statistical idea _ n are mutually |nd-ependent random
variables and they are also independent of X's.

2. Bootstrap and resampling copies of the Probability distributions of the random variables
censoring data Y., Y,,....,Y, are defined bygdf

The random variableX denotes time to failure of _ o
an element. The probability distribution of the ¢im G(y) =P =y), 1=12..n (2)
to failure is defined by the cumulative distributio

function (df) Those functions do not depend on parameter

@ JO. In many cases these functions are defined
Fo(x) = P(X =X) 1)
0 for y<y,

- 1[0, .
1 for y=>y, v B0l

Gi(y):{

where 8 0O is true but unknown parameter. To
assess this distribution we tesidentical elements
e,e,,....e,through  the times vy,,y,,..Y, It means that the quantities of,,Y,,....Y, are
correspondingly. Suppose, that the numbersdetermined.

X, Xy, X, are the times to failures of the elements The observations are described by the random
mentioned above. A vectax, = (X, X,,...x, of  variables

the data is assumed to be the value of the random

vector X, =(X;,X,,...,X,), Wwhere random U; =min(X;,Y;), j=1..n (3)
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and coming from distributionlf(z;z(n)) are said to be
_{1for X, <Y, " resampling copiesf the data
=
Ofor X; >Y; Zny =(Zays 22y Zny ) -

The sufficient statistic deSCFibing observations ca In other words a resamp”ng copy of the data
be written as the vectdaZ , =((U1,Al),...-,(Un,An ,) 20 =",z ,...z"0) is generated by
The value of that random vector is the VeCtorrandome sampling n—times with replacement
z, =((u;,9,),--,(uy,9,)), which allows to obtain fom the original data points
the vector z.) =(Zy,Zp) 2wy Zey o Zm) V) Zgy =(Zgy2 2@y 1 Zy) - The randomly sampling
where z,,24,...,Z,, are the instants of the means the random choice of an element from
among Zyyy, Zy s+ Z(ny in each ofn drawings. The
resampling copy of the data is composed of the

ements of the original sample, some of them can
e taken zero times, some of them can be taken
ones or twice etc. Notice that in
20 =(z",z",...,z") - the resampling copy,
the elements are repeated as a rule.

ST _ The typical number of the bootstrap or

bootstrap copies 1000.

elements failure andz.,,Zy.,-.-.Z,, are the

times observations of the working elements.
Suppose that we are able to estimate a paramet

0O by wusing estimator 6,=T(Z, (or
:'F(Z(n))). The numbersé’nzT(zn )

> @

(or

n

9n :f(z(n))) are their values. After that we can use

1) = (7(b) (D) 3. Bootstrap estimators

2z =2,z z)), b=12,....B
Let 2. =(Z,,Z,,....Z,) be a bootstrap sample for

of data zg, =(zy,Zp),-Zn » The bootstrap the given vector of data, =(z,,2,.,....z, .)

copies of data are the values of the random vectorg random variable®? =T(z") is said to be a

zW =2z, zY...2), b=12,...B that are

called thebootstrap samples he function Féb Ois
n

bootstrap estimator of the parameter
The distribution of the statistic®, -0, for the

a cumulative probability distribution of the
independent random variabl&s® ,z? ,...,z®)
If we have a vector of observation

Ziy = (24, 2@y 2) Of sizen, we can define the

bootstrap sample with the fixed values data iseclos
to the distribution of the statisticﬁ% -6.

From that rule it follows that the shapes of the
distributions of the statistic8,, ﬁn are similar.

To obtain empirical distribution of the random

empirical cumulative distribution functioR as _ . _ _
variable®, we have to simulate bootstrap copies

#z, 1242

F(zz)= -

20 = (20 70 Oy h=12. B

that is equivalent to the discrete distribution of dataz, =(z,z,...,z, ). After that we calculate

the values of statistics
ol .
6 =1(z), b=12....B

wheren, =#i:z; =z, } We can use a nonparametric kernel estimator to
This distribution can be expressed as a vector opbtain the estimate of probability density of the
frequencie = (P, Pyre-n Py ) bootstrap estimatod .. The value of this estimator

Vectors of the data with Gaussian kernel is given by

Z;(r) =(2I(r)’zg(r)1'--1z:1(r))1 r=1v21""’R
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6(9) =

1 & (ﬂ_gnt(b)j 5. Empirical Bayes estimation

BhH h The recent work deal with empirical Bayes

estimation has been stimulated by the work of

where Robbins (1955). It is well known that the value of

K(9) =

Bayes estimatorg, of the parameteld under the
5 squared-loss function is an expectation in posterio
2 - ~
, I (=00, ), distribution. If 8 is a value of sufficient statistics for

parameterd , than the value of Bayes estima@g

e

gl
N

and of the parameteé is

h = 106s B™2 - iati f(6
S , S standard deviation of _ Ieef(9|9)g(‘9)dv(9)
6., b=12,...B.

are the bootstrap replication of the statisticsigal

4. The bootstrap estimate of standard error

Z;(b) = (Zl*(b)VZ;(b) l"'lZ:](b))7 b = 12"8

6, = E(66) @)

[, F@é16)9(6)dv(8)

where v denotes a discrete counting measure or
Lebesgue measure and(d iy a prior density
function of the parametef with respect to the
measurey .

We suppose that a prior density of mentioned
above parameter is unknown. In classical empirical

6,” =T(z\”), b=12....B (5) Bayesian procedure a prior distribution is assessed

from thepast data Very often the only data we have

and they correspond to the bootstrap censoring datais the small sample =(z,,z,,...,z, .)In those cases

The bootstrap estimate of the standard errofdé  instead of the past data, we can use the vectors
defined by the following formula 2 =(z® 2™ . Z®) b=12...,B, that are

values of thebootstrap samplesorresponding to an
unknown distributionF, () of a random variable X,

(6) which denotes (for example) a time to failure. The
bootstrap copies for the censored data are gederate

from the distribution F; (0J, where 8 =T(z, )

To estimate the unknown parame#rwe have to
calculate the values of the bootstrap statistics

0" =T(z™), b=12,....,B of that one.

The bootstrap algorithm for estimating standard AS @ Prior density we propose a discrete density

errors is as follows: function
- GetB independent bootstrap samples m
*, *, *, *, - _ 1 Hl)
z® =(z®,z",..,z"™), b=12,...B (for 9(6) = m o(6,6™"), (8)
estimating a standard error, the number Bf i Of i iy iu} O 4L B}

should be in the range 30-200).

Compute the bootstrap replication correspond
each bootstrap sample,
o"» =T1(z™), b=1.2,..,B.

Compute the standard errae;,by the sample

standard deviation oB replications according to _
(6). denotes number observations equadtty .

where

m =#{k: 6 =61}

1 for =60

i)y —
0.6 )_{O for 9z 6"
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and 1(2(ny,A) = i|E|l fe(z(i))i:|f|+£1_|:9(z(i))] =

m= zivilmii =B -1 Zn:z- (12)
= FIAe_A W A’ 0= e = v
From (7), for counting measurg and for the =1 i=k+1

density function defined by (8) we obtain

The number
5 Dy AR CIAR
6. =E(6|6) = - = _3
B @16) S m f(¢9|¢9u')) r—g;lz(i) (23)

R (9)

B () i)

=Z'=10 _ fA(Hle )_ is the value of some sufficient statistics for the
B f(8]16™) unknown parameteri. By substitution we obtain

the likelihood function

Let
I(7,1) = A*e™7,
f,(z2?)=1(z?:0)
grm ™ which depends onr. To find the value of the

be a likelihood function for the bootstrap sample maximum likelihood estimator we have to solve an

equation
G oIni(x.A) _,
0A '
with unknown parametedJ©. The function is
defined by the formula The solution of it is
*| kb *| n *, ~ k k
(b) - (b) _ (b) K _
1(z 5 ’6)_51 fo(zg )i:QE- Fo(zg )] (10) A =TT a1
gzm

Notice that a prior distribution is constructed on
the basis on the bootstrap samples. Since, a valueThe same way, using formula (7) for the bootstrap
of bootstrap empirical Bayes estimator has the gsamples z(? = (2P, zZ/{? zz(')’)), b=12...B

form of (9) o = Z BB
' we obtain the values of the maximum likelihood

estimator of.

6. Examples
Example 1. K®  ®
A0 =—=r——, b=12...B

Suppose that we wish to estimate a failure rate r >z ®
8= in the exponential distribution given pgf =

f,00=Ae’ % x20, 1>0 (11) The function (9) in this case is given by the folanu

g - ) =Y, .

ohi A S mAO T A

Assume that we have data, which is the vector Ay =E(A]) = = (41477

srm F(A[AT0)
Z(y = (201 Z(2) - -Ziky » Zyesy - Zy )

where
where zy,7,,...,Zy, are times to failure of the
tested elements andy.,), Zy.z),--%n) are times of ~ D _L(')
the working elements observations. In that case a FAIAD)=(1) e

likelihood function is
Finally we obtain
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o e
- om0 Cye I(r,/l)zf(r|r):(—£J A
e (i) ) o 17)

* (1 7 T
TLmEA ) ke A _(_Inr) e
_ _) X,
- ?zl(A*(J))kﬂe 4
B (D) The likelihood equation
sk 5
B (A e 4
L) ol ) _
0A
where
is carried out to the following form
N K'®
A= - /]*(b):n—*(b), b=12.....B k +L—
5% Lz rinr  rx,

By repetition we can obtain a sequence of values of\ root of the equation is a value of the maximum
a Bayes estimator that we can use to construct itdkelihood estimate of and it has a form of
empirical distribution.
_(Lmj
Example 2. r=e'’ (18)
We wish to estimate a value of an exponentialUsing the bootstrap samples
reliability function
*(b) — (,*(b) *(b) *(b) -
N Zgy =(2gy' 1200 viZny )y D=12,.....B
Ry(x)=e™,x=20,4>0, 8=A. (15)

we obtain the values of the maximum likelihood

At a fixed momentx, the number estimator ofr and it is defined by

r=Ry(X) = e

D)y
is a value of the reliability function. Hence 3 1)
rf®=e =/ p=12..B.
Inr
A=—. 16
Xo (16) As

There is a given vector ~ _ _ mye L
] f(flr[(')):ln(r[('),r):(——Inr J (rye,
X
Zm) = (21 22y 2y Zerny -1 Zmy ) ’
] ] ] then the value of the Bayes empirical estimate of
the coordinates of which have the same meaning a8omputed on the basis on
in Example 1. Letr is described by (13). A
likelihood function of the parameter for z, is W e )
zmrf ()
fBzE(rlf)z':1W - : .
>m ()
i=1

I(r,A) = Ae™7.

Inr

Substituting the value ofi andr =e"" we get the
form of the likelihood function has the following form
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w g Inrt® k o~
2mr = = (r)
i=1 XO
. k T
w Inrt o
Zm{_ (r)*
i=1 XO

7. Conclusions

g

In that paper we present the possibility of apmyin
the bootstrap methods in empirical Bayes
estimation. The bootstrap copies of the given data
are used to construct an empirical prior distridouti
function.
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