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1. Introduction 

The bootstrap is a data-based method of simulation 
for assessing statistical accuracy. The term bootstrap 
derives from the phrase ‘to pull oneself up by one’s 
bootstrap’ which can be found in the eighteenth 
century Adventures of Baron Munchausen by 
Rudolf Erich Raspe. Efron proposed the method. 
The main goal of the bootstrap method is a 
computer-based fulfilling of basic statistical ideas. 

 
2. Bootstrap and resampling copies of the 
censoring data 

The random variable X  denotes time to failure of 
an element. The probability distribution of the time 
to failure is defined by the cumulative distribution 
function (cdf)  
 
   )()( xXPxF ≤=θ                                             (1) 

 
 where Θ∈θ  is true but unknown parameter. To   

assess this distribution we test n identical elements 

neee ,...,, 21 through the times nyyy ,...,, 21  
correspondingly. Suppose, that the numbers 

nxxx ,...,, 21  are the times to failures of the elements 

mentioned above.  A vector ),...,,( 21 nn xxx=x  of 
the data is assumed to be the value of the random 
vector ),...,,( 21 nn XXX=X , where random 

variables nXXX ,...,, 21  are mutually independent 
and identically distributed (i.i.d.). That random 
vector is a sample from the distribution )(⋅θF . A 

vector ),...,,( 21 nn yyyy = of the testing times of 
elements (times of the observations, censoring 
points) we can treat as the value of the random 
vector ),...,,( 21 nn YYY=Y . We assume that 

nYYY ,...,, 21  are mutually independent random 
variables and they are also independent of X’s.  
Probability distributions of the random variables 

nYYY ,...,, 21  are defined by cdf  
 
    niyYPyG iii ,...,2,1),()( =≤=                        (2) 
 
Those functions do not depend on parameter 

Θ∈θ . In many cases these functions are defined  
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It means that the quantities of nYYY ,...,, 21  are 
determined.      
The observations are described by the random 
variables  
 
   ),min( jjj YXU = , nj ,...,1=                             (3) 

 

 

Grabski Franciszek 

Załęska-Fornal Agata 
Navy University, Gdynia, Poland 
 
 
 

Bootstrap methods for the censored data in empirical Bayes estimation  of 
the reliability parameters 
 
 
 
 
 
Keywords 

bootstrap method, resampling method, estimate, bootstrap replicates. 
 
Abstract 
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The sufficient statistic describing observations can 
be written as the vector ),(),...,,(( 11 nnn UU ∆∆=Z , 
The value of that random vector is the vector 

)),(),...,,(( 11 nnn uu δδ=z , which allows to obtain 

the vector ),...,,,..,( )()1()()2()1()( nkkn zzzzz +=z , 

where )()2()1( ,...,, kzzz  are the instants of the 

elements failure and )()2()1( ,...,, nkk zzz ++  are the 

times observations of the working elements.   
Suppose that we are able to estimate a parameter 

Θ∈θ  by using estimator )(ˆ
nn T Zθ = (or 

)(
~ˆ

)(nn T Zθ = ).  The numbers )(ˆ
nn T z=θ    (or 

)(
~ˆ

)(nn T z=θ ) are their values. After that we can use 

the distribution )(ˆ ⋅
n

Fθ  to simulate so-called 

bootstrap copies    
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of data ),...,,( )()2()1()( nn zzz=z . The bootstrap 

copies of data are the values of the random vectors 

BbZZZ b
n

bbb
n ,....,2,1),,...,,( )*(
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)( ==∗Z  that are 

called the bootstrap samples. The function )(ˆ ⋅b
n

F
θ

 is 

a cumulative probability distribution of the 

independent random variables )*()*(
2

)*(
1 ,...,, b

n
bb ZZZ .  

If we have a vector of observation 
),...,,( )()2()1()( nn zzz=z  of size n , we can define the 

empirical cumulative distribution function F̂  as  
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that is equivalent to the discrete distribution  
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where }:{# ))()( kik zzin == .  

This distribution can be expressed as a vector of 
frequencies )ˆ,...,ˆ,ˆ(ˆ 21 lppp=p . 
Vectors of the data                
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coming from distribution );(ˆ
)(nzF z  are said to be 

resampling copies of the data    
 
   ),...,,( )()2()1()( nn zzz=z .  

 
In other words a resampling copy of the data 

),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz oooo =z  is generated by 

randomly sampling −n times with replacement 
from the original data points 

),...,,( )()2()1()( nn zzz=z . The randomly sampling 

means the random choice of an element from 
among )()2()1( ,...,, nzzz  in each of n drawings. The 

resampling copy of the data is composed of the 
elements of the original sample, some of them can 
be taken zero times, some of them can be taken 
ones or twice etc. Notice that in 

),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz oooo =z  - the resampling copy, 

the elements are repeated as a rule.  
The typical number of the bootstrap B or 

resampling copies of the data, range from 50 to 
1000. 

 
3. Bootstrap estimators 

Let ),...,,( **
2

*
1 nn ZZZ=∗Z  be a bootstrap sample for 

the given vector of data ),...,,( 21 nn zzz=z .  

A random variable )( ∗∗ = nn T Zθ  is said to be a 
bootstrap estimator of the parameter .θ  

The distribution of the statistics nn θθ ˆ−∗  for the 
bootstrap sample with the fixed values data is close 

to the distribution of the statistics θ−nθ̂ .  
From that rule it follows that the shapes of the 

distributions of the statistics nn θθ ˆ,∗  are similar.  
To obtain empirical distribution of the random 

variable ∗
nθ  we have to simulate bootstrap copies    
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of data ),...,,( 21 nn zzz=z . After that we calculate 
the values of statistics    
 

   BbT b
n

b
n ,....,2,1),( )*()( ==∗ zθ  

 
We can use a nonparametric kernel estimator to 
obtain the estimate of probability density of the 

bootstrap estimator ∗nθ . The value of this estimator 

with Gaussian kernel is given by  
 
                   



SSARS 2009   
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland 

 

 109 

   ∑
=

∗








 −=
B

b

b
n

h
K

hB
g

1

)(1
)(ˆ

θϑϑ  

 
where  
 

   ),,(,
2

1
)( 2

2

∞−∞∈=
−

ϑ
π

ϑ
ϑ

eK  

 
and 
 

2.006.1 −= Bsh ,  s - standard deviation of 

Bbb
n ,....,2,1,)( =∗θ . 

 
 4. The bootstrap estimate of standard error 
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are the bootstrap replication of the statistics values 
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n

b
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and they correspond to the bootstrap censoring data.                     

The bootstrap estimate of the standard error of θ̂  is 
defined by the following formula 
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The bootstrap algorithm for estimating standard 
errors is as follows: 
- GetB independent bootstrap samples  

Bbzzz b
n

bbb
n ,....,2,1),,...,,( )*()*(

2
)*(

1
)*( ==z  (for 

estimating a standard error, the number of B  
should be in the range 30-200). 

- Compute the bootstrap replication correspond 
each bootstrap sample, 

.,....,2,1),( )*()( BbT b
n

b
n ==∗ zθ  

- Compute the standard error ∗θ̂se by the sample 

standard deviation of B  replications according to 
(6). 

 
 
 
 

5. Empirical Bayes estimation  

The recent work deal with empirical Bayes 
estimation has been stimulated by the work of 
Robbins  (1955). It is well known that the value of 

Bayes estimator Bθ̂  of the parameter θ  under the 
squared-loss function is an expectation in posterior 

distribution. If θ̂  is a value of sufficient statistics for 

parameter θ , than the value of Bayes estimator Bθ̂  
of the parameter θ  is 
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where ν  denotes a discrete counting measure or 
Lebesgue measure and )(θg  is a prior density 

function of the parameter θ  with respect to the 
measure ν .   
      We suppose that a prior density of mentioned 
above parameter is unknown. In classical empirical 
Bayesian procedure a prior distribution is assessed 
from the past data. Very often the only data we have 
is the small sample ),...,,( 21 nzzz=z .  In those cases 
instead of the past data, we can use the vectors 

Bbzzz b
n

bbb
n ,....,2,1),,...,,( )*()*(

2
)*(

1
)*( ==z , that are 

values of the bootstrap samples corresponding to an 
unknown distribution )(⋅θF  of a random variable X, 

which denotes (for example) a time to failure.  The 
bootstrap copies for the censored data are generated 

from the distribution )(ˆ ⋅θF , where )(ˆ
)(nT z=θ .  

To estimate the unknown parameter θ  we have to 
calculate the values of the bootstrap statistics 

BbzT b
n

b ,....,2,1),( )*()( ==∗θ  of that one.  

 As a prior density we propose a discrete density 
function 
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where  
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denotes number observations equal to )(i∗θ . 
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From  (7), for counting measure ν  and for the 
density function defined by (8) we obtain 
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Let  
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be a likelihood function for the bootstrap sample   
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with unknown parameter Θ∈θ . The function is 
defined by the formula   
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Notice that a prior distribution is constructed on 
the basis on the bootstrap samples. Since, a value 
of bootstrap empirical Bayes estimator has the 
form of (9). 
           
6. Examples  

 Example 1. 
 
Suppose that we wish to estimate a failure rate 

λθ =  in the exponential distribution given by pdf 
 

   0,0,)( >≥= − λλ λ
θ xexf x  .                     (11) 

 
Assume that we have data, which is the vector   
      
   ),...,,,..,( )()1()()2()1()( nkkn zzzzz +=z ,  

 
where )()2()1( ,...,, kzzz  are times to failure of the 

tested elements and )()2()1( ,...,, nkk zzz ++ are times of 

the working elements observations. In that case a 
likelihood function is  
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The number 
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is the value of some sufficient statistics for the 
unknown parameter  λ. By substitution we obtain 
the likelihood function 
 

   ,),( τλλλτ −= el k  
 
which depends on τ . To find the value of the 
maximum likelihood estimator we have to solve an 
equation 
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The solution of it is 
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The same way, using formula (7) for the bootstrap 

samples Bbzzz b
n
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we obtain the values of the maximum likelihood 
estimator of λ 
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The function (9) in this case is given by the formula 
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Finally we obtain 
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By repetition we can obtain a sequence of values of 
a Bayes estimator that we can use to construct its 
empirical distribution.  
 
Example 2. 
 
We wish to estimate a value of an exponential 
reliability function  
 

   .,0,0,)( λθλλ
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At a fixed moment 0x  the number   
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is a value of the reliability function.  Hence 
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There is a given vector       
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the coordinates of which have the same meaning as 
in Example 1. Let τ  is described by (13). A 
likelihood function of the parameter λ  for nz  is 
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Substituting the value of λ  and rer ln=  we get the 
form of the likelihood function 
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The likelihood equation 
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is carried out to the following form 
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A root of the equation is a value of the maximum 
likelihood estimate of r and it has a form of 
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Using the bootstrap samples   
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we obtain the values of the maximum likelihood 
estimator of r and it is defined by 
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then the value of the Bayes empirical estimate of r  
computed on the basis on 
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has the following form 
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7. Conclusions 

In that paper we present the possibility of applying 
the bootstrap methods in empirical Bayes 
estimation. The bootstrap copies of the given data 
are used to construct an empirical prior distribution 
function.  
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