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The concepT for numerical developmenT  
of modular neTworks inTegraTed wiTh  
The gnss measuremenTs

Tadeusz Gargula

Summary 

The paper presents a proposed adjustment algorithm for an integrated method of measuring 
situational and altitude details, consisting in combining the modular network elements (clas-
sical terrestrial measurements) with the GNSS vectors. Satellite measurements are treated as 
additional observations, strengthening the network structure, or playing the role of binding (tie) 
elements between the classical modules. The proposed algorithm is based on the idea of total 
adjustment of all types of observations (terrestrial, satellite) with the intermediary method, ac-
cording to the least squares procedure. In order to determine the necessary approximate values 
of the unknowns (coordinates of the points, which are being determined), the GNSS vectors 
may be used.
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1.	 Introduction

In geodetic practice, it is increasingly often that satellite measurement techniques are 
used, supported by traditional (classical) methods. This kind of combination proves 
beneficial in the implementation of various engineering tasks, such as monitoring the 
condition of objects exposed to displacements and deformations. As an alternative to 
the classical situational-height measurement (based on centred positions) the so-called 
modular networks method can be used [Gargula 2003, Regulation 2012], supplemented 
with GNSS measurements (vectors). 

GNSS measurement often turns out to be insufficient (in terms of the accuracy of 
determinations); it may be so, for instance, in unfavourable terrain conditions (such 
as low exposure of the object to satellite signals, or obstacles in the form of buildings, 
trees, etc.). Another reason for the low accuracy of the GNSS measurement results may 
lie in the way the measured object is related to the reference system. The use of long 
reference vectors – the order of several dozen kilometres – for instance, when using the 
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ASG-EUPOS system [Regulation 2011], may have an adverse effect on the accuracy of 
the absolute positions (compare: Gargula 2009b, 2010, 2011b) as well as on the inter-
nal geometric set of the local measuring network. Therefore, there is a need to apply 
additional classical measurements (in a sense, acting as control measures), which at the 
stage of numerical elaboration, and combined with the GNSS vectors, would form an 
integrated observation system.

A typical modular network consists of elementary modules connected with each 
other by means of binding (tie) points [Gargula 2009a]. The elementary modules 
are generated by a set of angular-linear observations obtained on a single pole meas-
urement station. In the classical approach [Gargula 2003], at the stage of numerical 
elaboration, the set of observations is transformed into a set of coordinates of points, 
expressed in an arbitrarily defined local system of the given module. In this case, the 
network adjustment consists in the simultaneous transformation of all modules into 
the common system (defined by fixed points). This task boils down to the mathematical 
solution of a system of conditional equations with unknowns (i.e. local transformation 
parameters for each of the elementary modules – Fig. 1).

Fig. 1. Structure of a modular network integrated with the GNSS vectors
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In the case of modular networks integrated with the GNSS measurements, the 
elementary module can be formed by the components of the observation vector or by 
the coordinates of a pair of points of this vector (Fig. 1), expressed in a local system. The 
GNSS vectors strengthen the network structure (as additional supernumerary obser-
vations), and they also enable easy determination of approximate coordinates for the 
network points, which are being designated. This in turn allows the development of 
the network using the parametric method, commonly used in the creation of compu-
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tational algorithms in computer programming. The classical observations (angles, 
lengths) and components of the GNSS vectors will be subjected to adjustment (for 
instance, after they are projected to the cartographic system). Within the structure of 
a geodetic network, the GNSS modules (vectors) can also constitute binding elements 
between classical modules.

The numerical elaboration presented in this paper is an alternative to transforma-
tional adjustment. This method (adjustment of modular networks integrated with the 
GNSS vectors) has already been proposed in an earlier work [Gargula 2003].

2.	 Mathematical	model	for	the	adjustment	of	an	integrated	network

Needless to say, adjustment of any geodetic network using the parametric method boils 
down to solving the system of linear correction equations according to the principle 
of the least squares. In the case of modular networks integrated with GNSS vectors, 
considered herein, several types of equations will appear in the system of observational 
equations (Fig. 2). In a  three-dimensional space, these will be equations formulated 
for: 1) slope distance, 2) horizontal angle, 3) vertical angle, and 4) three components of 
the GNSS vector. In turn, in the observation system of a flat network (adjusted on the 
plane of the cartographic system) there will be no vertical angle, the slope length will be 
replaced by a reduced length, and the GNSS vector will be represented by two compo-
nents (after making appropriate transformations from the three-dimensional WGS’84 
system to the plane of the developed network – compare: Gargula 2011a, 2011b). In the 
present work, we will consider a more general case, which is adjustment the network 
in a spatial arrangement. The process of linearization of observation equations in itself 
has been omitted, while the following formulations already present error formulas in 
a linear form (see for example: Lazzarini et al. 1990, Lamparski 2001, Czarnecki 2010, 
Osada 2014).

Fig. 2. Elementary observations: a) the classical module; b) the GNSS module (i – measuring 
station; j, k – tie points; β – horizontal angle; γ – vertical angle; d – slope distance;  – 
horizontal distance; Δx, Δy, Δz – components of the GNSS vector)
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where: 
v(d) – slope distance correction,
d – observed slope distance,
d(0) – approximate slope distance,
(∂x, ∂y, ∂z) – coordinate corrections,
l(d) – free term,
(x(0), y(0), z(0)) – approximate coordinates,
(∆x(0), ∆y(0), ∆z(0)) – increments of the approximate coordinates.
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where: 
v(γ) – vertical angle correction,
γ – observed vertical angle,
γ(0) – approximate vertical angle,
l(γ) – free term,
d
(0)  – (approximate) horizontal distance.

Horizontal angle
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where: 
v(β) – horizontal angle correction,
β – observed horizontal angle, 
β(0) – approximate horizontal angle,
l(β) – free term.

GNSS Vector
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where: 
(v(∆x), v(∆y), v(∆z)) – the GNSS vector coordinates’ increments corrections,
(∆x(0), ∆y(0), ∆z(0)) – approximate components of the GNSS vector.

3.	 Adjustment	of	the	observation	system	according	to	the	least	squares	
method

The system composed of all types of correction equations (1), (4), (6), (8) will be 
recorded as the following matrix:
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where:
A – matrix of coefficients (partial derivatives) at the unknowns (of the point coor-

dinates being determined),
V – vector of observation corrections,
L – vector of free terms (calculated according to formulas 2, 5, 7, 9, written with 

the opposite symbol),
X – vector of unknowns (increments of the approximate coordinates),
p – the number of all designated points.
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The vector of free terms L appearing in equation (10) can be determined from the 
difference between two constituent vectors:

 L L L’= −( )0  (14)

L(0) – vector of approximate (calculated) observations’ values,
L′ – vector of the observations made (results of measurements).

The vector of observations contains two sub-vectors representing different types of 
measurements:
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where: 
L(K) – vector of the classical observations,
L(G) – vector of the GNSS observations,
L(jk) – observation vector for the jk base – of the GNSS vector. 

The estimated vector of the unknowns (13) is calculated using the method known 
from the adjustment calculus (see for example Wiśniewski 2005, Ghilani 2010, Preweda 
2013), resulting from the imposition on the least squares condition (VT . P . V = min) 
of the following system of adjustment equations (10):
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where:
P – diagonal matrix of the observation weights,
μ(d), μ(γ), μ(β), μ(Δx), μ(Δy), μ(Δz) – a priori mean errors of individual types of observa-

tions (according to Fig. 2).



The concepT for numerical developmenT of modular neTworks ... 21

Geomatics, Landmanagement and Landscape No. 1 • 2019

The purpose of the adjustment is to determine the observational corrections derived 
from the equation (10) after substituting the vector X with the estimated values of the 
unknowns of the X  vector (19). The next stage consists in combining the adjusted 
values: the X(W) coordinates and the L(W) observations:
 X XW 0( ) ( )= + X  (21)

 L L’ VW( ) = +  (22)

 X 0 0 0 0 1 2( ) ( ) ( ) ( )= ={ }





x y z i pi i i

T
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where: X(0)  – the vector of approximate coordinates.

4.	 Accuracy	assessment	(stochastic	model)

The accuracy assessment, carried out after the adjustment, should make it possible to 
check whether the obtained results meet the requirements of the applicable technical 
standards. The required criteria for the accuracy of the measurement network determi-
nation are the mean errors of the flat coordinates and elevation coordinates, as well as 
the errors of point positions. These values are easily determined based on the results of 
network adjustment:

 K A P AT 1
= ⋅ = ⋅ ⋅ ⋅( )−

µ µ0
2

0
2Q  (24)

 µ0
2 = ⋅ ⋅V P VT

r
 (25)

where: 
Q, K – respectively: the theoretical and the practical covariance matrix of the 

vector of unknown values,
μ0 – mean unit error of observation,
r – the number of redundant observations. 

The information about mean square errors of the coordinates is contained in the 
diagonal elements of the matrix K (mean square errors of the coordinates).

As a global indicator of the accuracy of the assumed matrix, the mean (average) 
value of the point position error is typically used, which can be calculated directly from 
the covariance matrix of the vector of the unknown values (24) – see for instance Kadaj 
[1979]:

 µ µP[r p
Tr= ⋅ ( )0

1 Q  (26)

where:
p – number of designated network points,
Tr(Q) – the trace of the covariance matrix of the vector of the unknown values.
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5.	 Conclusions	

The measurement and calculation methodology for modular networks integrated with 
the GNSS vectors, considered in this paper, may find an effective application in the 
measurement of areas with a  high degree of density of situation-altitude details, as 
well as in periodic measurements of displacements or deformations. This applies in 
particular to cases where the use of other methods (for instance, the RTK GNSS) is 
either impossible or significantly impeded [Gargula et al. 2005]. The main advantage 
of modular networks is the flexibility of their construction (stations can be set in any 
place, whereas tie points serve as target points), as well as the possibility of designing 
the network directly in the field while measuring the details. The introduction of addi-
tional observations – the GNSS vectors – aims to strengthen the network structure and 
provide coordinates of approximate tie points. In some situations (for instance, with no 
details to measure), the GNSS vectors can serve as tie elements between the segments 
of classical modular networks (Fig. 1).

Adjustment of the modular network enhanced with the GNSS vectors is possi-
ble according to one of two basic methods. In addition to the parametric procedure 
presented in this paper, there is a  slightly more complex method of adjustment, 
namely, the transformation method. However, the disadvantage of this second method 
is the need to create individual modules associated with each measurement station, 
and to compile conditional equations for each tie point [Gargula 2003]. The interme-
diary method, on the other hand, requires the estimation of the coordinates of the 
approximate points that are being determined, which is not a simple task considering 
the irregular structure of the network. Transformational adjustment of the modular 
network using the approximation method [Regulation 2012] is a time-consuming and 
hardly cost-effective process. A simple way of obtaining approximate coordinates can 
be to apply the GNSS vectors for the pairs of tie points. The next steps of adjusting the 
integrated network do not differ significantly in relation to the adjustment procedure 
for the classical network.

In the present work, the formulas for creating a system of observational equations 
in a three-dimensional space (equations 1–9) have been compiled. After an appropriate 
transformation of the observations into the cartographic plane, the functional model 
of the adjustment task will contain only the error equations for horizontal angles (or 
directions), for horizontal length, and for two components of the GNSS vector (Δx, 
Δy). In the further part of the work, a detailed adjustment procedure was shown, in 
matrix notation (equations 10–23). The stochastic model (formulas 24–26) is used to 
evaluate the accuracy of the designated points of the integrated network.

The next stage of research work related to the subject of this paper will be the practi-
cal verification of the proposed algorithm, using a real practical example (the meas-
urement of displacements in a landslide area). Positive results of this verification will 
provide the basis for creating an operational computer software program.
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