PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Improvement of Mechanical Properties and Corrosion Resistance of Friction Stir Welded Joints Made of Dissimilar Aluminum Alloys Through Scandium-Enriched Alloy Powder Incorporation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Friction stir welding (FSW) is a widely utilized process for joining aluminum alloys due to its ability to produce high-quality welds with excellent mechanical properties. In this study, the effect of adding Scandium enriched (Al-1Sc-0.3Zr) alloy powder on the FSW of AA2024 and AA6351 alloys was investigated. The experimentation was carried out at different speeds of 800, 1200, and 1600 rpm while maintaining a welding speed of 35 mm/min and an axial load of 3 kN. The master alloy powder was added to the base materials prior to welding, and the resulting welds were characterized using optical microscopy, scanning electron microscopy, hardness testing, tensile testing, and corrosion testing. At 800 rpm, the tensile strength increased from 200.7 MPa without powder to 241.8 MPa with powder and hardness values were notably higher in samples with powder, such as increasing from 98.3 HV without powder to 115.33 HV with powder at 1200 rpm. The addition of the Scandium enriched powder significantly improved the tensile strength, hardness, and corrosion resistance of the welds compared to welds produced without the use of this powder. The findings of this study suggest that incorporating Scandium enriched powder into the FSW process can effectively enhance the mechanical and corrosion properties of AA2024 and AA6351 alloy welds, thereby improving the overall performance of the welding process.
Twórcy
  • Department of Mechanical Engineering, Andhra University College of Engineering, Visakhapatnam – 530003, India
  • Department of Mechanical Engineering, Andhra University College of Engineering, Visakhapatnam – 530003, India
Bibliografia
  • 1. Umer K.H., Shah H. Advances in Industrial Control Dynamics and Control of Industrial Cranes. 2019.
  • 2. Abdel-Rahman E.M., Nayfeh A.H., Masoud Z.N Dynamics and control of cranes: A review. JVC/ Journal Vib. Control. 2003; 9: 863–908. https://doi. org/10.1177/1077546303009007007
  • 3. Cekus D., Gnatowska R., Kwiatoń P. Impact of Wind on the Movement of the Load Carried by Rotary Crane. Appl. Sci. 2019; 9. https://doi.org/10.3390/ app9183842
  • 4. Geisler, T., Sochacki W. Modelling and research into the vibrations of truck crane. Sci. Res. Inst. Math. Comput. Sci. 2011; 10: 49–60.
  • 5. Taylor P., Mijailovi R. Modelling the dynamic behaviour of the truck-crane. Transport 2011, 26, 410–417. https://doi.org/10.3846/16484142.2011.642946
  • 6. Tra̧bka A. Dynamics of telescopic cranes with flexible structural components. Int. J. Mech. Sci. 2014, 88, 162–174. https://doi.org/10.1016/j. ijmecsci.2014.07.009
  • 7. Ilir D., Naser L. Truck mounted cranes during load lifting – dynamic analysis and regulation using modelling and simulations. Int. Sci. J. Mach. Technol. Mater. 2016, X, 12–15.
  • 8. Saǧirli A., Bočoçlu M.E., Ömürlü V.E. Modeling the dynamics and kinematics of a telescopic rotary crane by the bond graph method (Part I). Nonlinear Dyn. 2003; 33: 337–351. https://doi. org/10.1023/B:NODY.0000009929.80965.3b
  • 9. Raftoyiannis I.G., Michaltsos G.T. Dynamic behavior of telescopic cranes boom. Int. J. Struct. Stab. Dyn. 2013; 13: 1350010-1-1350010–13. https://doi. org/10.1142/S0219455413500107
  • 10. Liu S., Liu J., Zhang K., Meng L. The dynamic stability analysis of telescopic booms of the crane based on the energy method. IOP Conf. Ser. Mater. Sci. Eng. 2018. https://doi. org/10.1088/1757-899X/399/1/012033
  • 11. Zheng Y., Wang D. Dynamic model studies of telescopic crane with a lifting and pulling load movement. Wirel. Pers. Commun. 2018; 102: 753–767. https://doi.org/10.1007/s11277-017-5098-y
  • 12. Maczynski A., Wojciech S. Dynamics of a mobile crane and optimisation of the slewing motion of its upper structure. Nonlinear Dyn. 2003; 32: 259–290. https://doi.org/10.1023/A:1024480318414
  • 13. Esqué S., Raneda A., Ellman A. Techniques for studying a mobile hydraulic crane in virtual reality. Int. J. Fluid Power 2003; 4: 25–35. https://doi.org/ 10.1080/14399776.2003.10781163
  • 14. Hera P. L., Mettin U., Manchester I.R., Shiriaev A. Identification and control of a hydraulic forestry crane. In: Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, 6–11 July 2008. https://doi. org/10.3182/20080706-5-kr-1001.00389
  • 15. Sochacki W., Tomski L. Free and parametric vibration of the system: telescopic boom - hydraulic cylinder (changing the crane radius). Arch. Mech. Eng. 1999; 46: 257–271.
  • 16. Bold M., Garus S., Sochacki W. Damped vibrations of telescopic crane boom. In: 24th International Conference Engineering Mechanics, Svratka, Czech Republic, 14–17 May 2018. https://doi. org/10.21495/91-8-101
  • 17. Qian J.B., Bao L.P., Yuan R.B., Yang X.J. Modeling and analysis of outrigger reaction forces of hydrau- lic mobile crane. Int. J. Eng. 2017; 30: 1246–1252. https://doi.org/10.5829/ije.2017.30.08b.18
  • 18. Kacalak W., Budniak Z., Majewski M. Computer aided analysis of the mobile crane handling system using computational intelligence methods. Adv. Intell. Syst. Comput. 2018; 662: 250–261. https://doi. org/10.5829/idosi.ije.2017.30.08b.18
  • 19. Sun G., Kleeberger M., Liu, J. Complete dynamic calculation of lattice mobile crane during hoisting mo-ion. Mech. Mach. Theory 2005; 40: 447–466. https:// doi.org/10.1016/j.mechmachtheory.2004.07.014
  • 20. Kjelland M.B., Hansen M.R. Using input shaping and pressure feedback to suppress oscillations in slewing motion of lightweight flexible hydraulic crane. Int. J. Fluid Power 2015; 16: 141–148. https:// doi.org/10.1080/14399776.2015.1089071
  • 21. Shabana A.A. Theory of Vibration. An Introduction. 1991; 1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f48085c5-c6ae-4db2-9eca-1c4e23dac8b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.